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Abstract

Optimal transport provides a powerful mathematical framework for comparing prob-
ability distributions, and has found successful application in various problems in
machine learning, including point cloud matching, generative modeling, and document
comparison. However, some important limitations curtail its broader applicability. In
many applications there is often additional structural information that is not captured
by the classic formulation of the problem. This information can range from explicit tree
and graph-like structure, to global structural invariances. Failure to fully model this
structure can hinder—if not preclude—the use of optimal transport-based approaches.

This thesis presents several extensions of the optimal transport problem to incor-
porate structural information. First, a non-linear generalization of the cost objective
based on submodularity is proposed. The resulting formulation provides a flexible
framework to model explicit or latent discrete structure in the data and admits efficient
optimization. Next, we investigate the issue of geometric invariances when matching
embedded representations, for which a general framework for optimal transport in the
presence of latent global transformations is developed. Various approaches to solve the
resulting optimization problem are proposed and compared. The last part of the thesis
addresses the problem of aligning datasets in which the structure is encoded through
non-Euclidean manifolds, such as hyperbolic spaces. In response to an unexpected
type of invariance that hyperbolic embeddings learned from data exhibit, a novel
framework that interweaves optimal transport and hyperbolic nonlinear registration
with deep neural networks is proposed.

While these extensions are formulated in general terms, the experimental results
presented in this thesis are focused on motivating applications in natural language
processing, including unsupervised word translation, sentence similarity, domain
adaptation, and ontology alignment.
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Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

Optimal transport (OT) is a mathematical toolbox for comparing probability distri-

butions tracing back its roots to the 18th century [131], born from the need to find

cost-effective schemes to transport coal from mines to factories. Since then, OT has

developed into a mature subfield at the intersection of mathematics, statistics, and

optimization, boasting elegant theory and applications ranging from economics to

computer graphics.

Optimal transport plays dual roles across machine learning applications. First, it

provides a well-founded, geometrically driven approach to realizing correspondences

between sets of objects such as shapes in different images. Such correspondences

can be used for image registration [81] or to interpolate between them [162]. More

generally, OT extends to problems such as domain adaptation where we wish to

transport a set of labeled source points to the realm of the target task [44, 43]. Second,

the transportation problem induces a theoretically well-characterized distance between

distributions. This distance is expressed in the form of a transport cost and serves

as a natural population difference measure, which can be exploited as a source of

feedback in adversarial training [14, 32].

Despite its long history, widespread use of OT in machine learning was somewhat

limited until very recently. Arguably, the main obstacle for further adoption had been

scalability. The computational complexity of the transportation problem made its use

prohibitive for the large-scale problems that abound in machine learning. This issue

19



has been greatly alleviated by major recent achievements on the optimization side of

OT, yielding remarkably more efficient algorithms [45, 3, 70].

A central argument of this thesis is that the most significant limitation for broader

use of OT in machine learning now stems from its applicability. In particular, in most

tasks in machine learning there is additional structural information beyond the ground

metric that remains uncaptured by the original formulation of the transportation

problem. This structure can be explicit if the distributions are defined over structured

objects, such as trees or graphs, or if there is additional information associated with

the support points (e.g., class labels) that induces structure. On the other hand, there

might exist structural invariances in the domains of interest that implicitly define

structure in the problem (e.g., rotational invariance). Very recently, there has been

important progress towards modeling structure in OT, particularly in the context of

computer graphics [162, 57], though various important open problems and untouched

applications remain.

In the remainder of this chapter, we present various tasks in machine learning for

which there is such additional information and discuss why the classic formulation of

the optimal transport problem is ill-equipped to solve them. These applications will

motivate and serve as evaluation for the extensions of optimal transport developed

throughout this thesis. We end this chapter by providing an overview of the rest of

the thesis and a summary of the contributions presented in each chapter.

1.1 Structure in Machine Learning

Our definition of structure in this thesis is purposely broad. On the one hand, we use

it in its more traditional meaning to refer to explicit structure in the data of interest,

such as when these consist of sequences, trees or graphs. But we use this term also

to refer to implicit structure. For example, labels or other metadata might confer a

latent structure to the data, or there might be structural priors on its representation,

such as those defined by global invariances.

It is hard to overstate the prevalence and importance of structured objects in
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various domains within and around machine learning. Sequences and trees are at the

core of natural language processing (NLP); the former as the basic surface-form by

which written and spoken language is transmitted (through sequences of characters

and words), and the latter in the form of various latent structures underlying it, such

as constituency or semantic parse trees. Depending on what a unit is defined to be, it

could be argued that all of these are examples of settings where the instances of the

learning problem themselves are structured. But structure can appear in NLP at the

dataset-level too. The archetypal examples of this are structured lexical databases like

WordNet [128], which are widely used as an additional resource in various downstream

tasks in computational linguistics [130, 157, 30]. These databases consist of a collection

of words (the nodes) labeled with metadata and edges linking them, such as hypernym

or synonym relations.

Structured data are also ubiquitous in bioinformatics and chemistry. For example,

evolutionary relationships among organisms are naturally represented in terms of phy-

logenetic trees. Large-scale protein-protein interaction and gene regulatory networks

are now routinely available, and are the primary ingredient for various computational

approaches. As for chemistry, it should come as no surprise that molecules are tradi-

tionally represented mathematically as graphs, with nodes playing the role of atoms

as edges the role of bonds. Yet another type of structured object which occurs in

biology—and various other domains—are ontologies, a generic data representation

type consisting of entities and relations between them [58]. These relations usually

correspond to a hierarchical or graph structure.

But structure can appear in much more subtle ways in machine learning too. For

example, whenever labels are provided as part of the learning problem, these often

induce a latent structure on the examples. Concretely, in the case of classification,

discrete labels implicitly define clusters in the feature space. Furthermore, if the labels

themselves belong to a hierarchy or can be otherwise represented relationally, then the

corresponding feature vectors derive complex structure from these relations too. All

of these are instances where the structure is present in additional information beyond

the feature representation of the data. However, the representation itself can reveal
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structure, such as geometric invariants or other group actions.

Structure is thus pervasive in machine learning, often conspicuously present in

the data, sometimes lurking silently in the tools we use to represent it. Therefore,

it is no surprise that learning with structure has been one of the core problems in

this field over the past two decades [94, 107, 169, 47, 103, 48]. Recently, the advent

of representation learning has brought about a new set of challenges in this realm.

Designing methods to derive meaning from large collections of structured data is

at the forefront of modern machine learning research [126, 138, 168, 135, 99, 82].

Conversely, new computational challenges emerge from the need to operate on these

representations. The object of study of this thesis is precisely rooted at this intersection

of representation of and computation on structured data. In the next section, we

provide various concrete examples of problems that arise from this junction, and which

motivate the contributions of this thesis.

1.2 Motivating Applications and the Case for Opti-

mal Transport

Comparing and relating data instances is one of the most fundamental tasks in machine

learning, and a key building block of most learning algorithms. This task can be

conceptually thought of as consisting of two independent but equally important steps,

which require answering the following questions:

i) how should the data be represented computationally?

ii) how should instances thus represented be compared?

When the data can be naturally represented in Euclidean space (e.g., the features are

independent and scalar-valued) neither of these questions warrants much attention: the

representation problem is a-priori solved and the comparison can be done meaningfully

using the Euclidean metric. However, when the data of interest are of a more complex

nature (such as structured objects like trees or graphs) or is to be operated on at
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a more abstract level (e.g., through collections of items or probability distributions

defined over them), these seemingly innocent questions become challenging problems.

Consider for example the problem of automatic sentence similarity assessment. In

this task, we seek a method to predict the similarity between any pair of sentences in

a given language. A popular approach to addressing question (i) within this task is

to use distributional representations of words [126, 138], which capture rich semantic

information in dense feature vectors. With this, we can now compare words in terms

of their distance in this vector space.1 However, truly answering question (ii), i.e.,

comparing the sentences themselves, requires a method to lift the notion of word-to-

word similarity into one that takes into account the relations, the relative order and

the role of these words within their respective sentences.

Another setting where finding correspondences is at the core of the learning problem

is domain adaptation. In this paradigm, training labels in the target domain of interest

are assumed to be minimal or non-existent, while labeled data for a similar—though

not identical— source domain is available in much larger quantities. The goal is thus

to leverage the similarities between the domains to make use of source labeled data to

train a model for the target domain. If the representations of the data from the two

domains are compatible, an instinctive idea is to find correspondences between the two

collections of data, and use these to transport the labeled source samples to the target

domain. However, doing so only using the geometry of the representations—e.g.,

their pairwise distances in the feature space— leaves important information behind.

Intuitively, one would want to encourage points sharing the same class label to be

“moved” together, so as to respect the cluster structure of the domain. In other words,

we seek for the transportation of samples to be informed both by the geometry and

the underlying label-induced structure of the examples.

Our final motivating application concerns the problem of unsupervised word

translation, which involves finding word-to-word correspondences across languages

without access to any parallel data, but only monolingual texts. Again, a sensible

1However, the question of what metric is most appropriate to use when comparing vector-space
models of language has sparked much debate since their early days [159, 115, 84].

23



starting point is to use word embedding algorithms on the monolingual corpora to

produce vector representations of the words in the two languages. The observation

that word embeddings across different languages exhibit similar semantic phenomena

[126, 84] suggests that these embedded representations might be similar enough to

allow for correspondences to be inferred between them. One could, for example,

translate words as their closest neighbor among all vectors from the other language.

Unfortunately, this naive approach fails – for two separate reasons. First, greedily

assigning correspondences often leads to many-to-one mappings (same translation for

several source words), but more crucially, direct computation of distances between

the embeddings is meaningless because there is no guarantee that the spaces are

globally aligned (e.g., all the vectors could be rotated by a constant angle in one of

the spaces). Thus, a better approach would involve coherent assignment of words as a

collection on the one hand, and a notion of similarity that is invariant to such global

transformations.

Despite being seemingly unrelated, all the problems mentioned above share three

crucial characteristics:

1. They involve a combination of correspondence, similarity, and transportation of

collections of samples

2. Any sensible approach to solving them should leverage the geometry of the

vector feature representations

3. Besides the feature representation, there is important additional structural

information that should inform the proposed approach

Somewhat surprisingly, there is a mathematical toolbox that provides a unified

framework for the three tasks described in Point (1), and furthermore, has geometry

embedded in its core. As the reader will surely suspect by this point, we are referring

to optimal transport. As we have mentioned before, OT is an appealing tool for these

tasks because of its strong theoretical foundations, efficient algorithms, and intuitive

nature. Indeed, many problems in machine learning and computer graphics that share
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Points (1) and (2) have been approached with optimal transport approaches, including

sentence similarity [106], domain adaptation [44] and unsupervised word translation

[183]. However, addressing Point (3) through the lens of optimal transport remains

largely an open problem. Indeed, one of the contributions of this thesis is showing

that neglecting structural information in the transportation problem is significantly

detrimental to the performance of these approaches. Then, the question we seek to

answer is

Can the framework of optimal transport be extended to structured domains?

In the next section, we briefly discuss why the problem posed by this question is

challenging and outline in broad strokes directions to tackle it. The rest of this thesis

is devoted to filling out the details of those strokes.

1.3 Optimal Transport with Structure: a Roadmap

In the previous section, we argued that optimal transport is an appealing approach to

tackle problems involving correspondence between collections of objects represented

in a vector space. Indeed, an important aspect of optimal transport distances is that

they reflect the metric of the underlying space in the transport cost. Yet, in all the

motivating applications discussed in the previous section, there is further important

structure that remains uncaptured. From a modeling perspective, there are three

main components of the transportation problem onto which this additional structure

information can be injected:

i) The cost function 𝑐(·, ·)

ii) The representation spaces 𝒳 ,𝒴

iii) The marginal constraints (i.e., the set Π(p,q) described in the next chapter)

Each of these approaches might be appropriate for different types of structure and

needs. For example, if the representation is fixed (either because it is expensive to

generate it, or it is provided as such) and does not already reflect the additional
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structural information, modifying the cost function is perhaps the most sensible route.

If instead the representation can be chosen, one might choose to proceed with (ii),

e.g., certain hierarchies can be naturally modeled through non-Euclidean (hyperbolic)

geometries. This, however, necessitates an investigation of whether optimal transport

is valid (and efficiently computable) in these alternative representations. Approach (iii)

might be appealing if one seeks to fully leverage the OT toolkit (e.g., doing meaningful

displacement interpolation, for which marginal constraints enforce structurally-coherent

distributions at every step).

In this thesis, we propose extensions of optimal transport using the approaches (i)

and (ii), and discuss possible approaches to tackle the last one—i.e., enforcing struc-

tured marginal constraints— in the concluding chapter, leaving a detailed exploration

of this third angle for future work. More specifically, we propose several extensions of

optimal transport to account for the various types of structural information described

in Section 1.2. In the next section, we provide a birds-eye view of these extensions

and the broader outline of this thesis.

1.4 Overview of this Thesis

This thesis covers a subset of the author’s work conducted as part of the PhD

requirements. For the sake of producing a coherent and well-structured manuscript,

the author opted to focus it on a single line of research. Thus, additional lines of work

on structured representation learning [85, 84, 7]; interpretability and robustness [8, 5,

6, 111, 112]; and generative modeling [116, 35] are not included in this thesis, but the

interested reader can find their details in the bibliography.

The layout of this thesis is intended to facilitate independent reading of chapters

by minimizing the dependencies between them. Except for Chapter 2 which provides

background for the rest of the thesis, the other chapters, each of which presents an

independent extension on the classic formulation of optimal transport presented in

Chapter 2, and can be read for the most part separately, in any order. However, the

task tackled in Chapter 5 will be better motivated (and its complexity more clearly
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appreciated!) after reading Chapter 4. A brief summary of each chapter is provided

below.

Chapter 2 sets up the background for the rest of the thesis. It is presented as

a review of fundamental concepts in the theory of optimal transport, highlighting

key properties and results which form the basis of the concepts presented in all

subsequent chapters. While this chapter contains crucial notions that will be referred

to throughout the thesis, a reader familiar with basic concepts of optimal transport

can safely skip it.

Chapter 3 deals with the problem of extending optimal transport to model

explicit structure in the form of sequence or tree-shaped data, or latent hierarchies

implicitly defined through labels. Compared to the two other principal chapters, this

one is perhaps the one requiring the most additional background beyond the basic

theory of optimal transport. The notion of submodularity, which plays a crucial

role in this chapter, is a deep and complex one, so we present a gentle introduction

for the uninitiated reader at the beginning of this chapter. Combined with the

background on optimal transport, this provides all the necessary ingredients to define

a generalization of optimal transport with structured submodular cost functions. After

formalizing the approach and deriving various optimization approaches to solve it, the

last section validates this framework on various experimental settings involving domain

adaptation, color transfer and sentence similarity. This chapter almost entirely based

on Alvarez-Melis et al. [9], with additional background on submodularity, a more

detailed derivation of the optimization routines and extended experimental results.

Chapter 4 addresses the problem of finding correspondences between embedded

representations in the presence of global invariances, such as rotations. The motivating

application is unsupervised alignment of word embedding spaces, where orthogonal

invariances preclude the direct application of optimal transport. In response to this

challenge, a general method to endow the transportation cost with invariance to various

types of transformation is developed. At a high level, the resulting framework seeks

to simultaneously optimize instance-wise correspondences between the embeddings

and global alignment of the spaces. This chapter primarily builds upon Alvarez-Melis
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et al. [10], exploring many other optimization approaches beyond the alternating

minimization scheme proposed in that work, and includes Alvarez-Melis and Jaakkola

[4] as an alternative approach to the same task.

Chapter 5 considers the problem of unsupervised alignment of hierarchical data.

In this case, we adopt an alternative approach to encode structure: directly through the

representation space. In a way, this chapter can be thought of as coupling the previous

two: sharing the goal of Chapter 4—unsupervised estimation of correspondences

between embedded spaces—but in a setting where the data we seek to match itself

has an underlying hierarchical structure, as in Chapter 3. Experimental results in

unsupervised WordNet translation and ontology matching are presented. This chapter

is based on Alvarez-Melis et al. [11], with additional background on hyperbolic spaces

and an extended experimental section.

Chapter 6 brings the thesis to a close. It discusses the implications of the

contributions of the results of the preceding chapters under a unified view, elaborates

on connections between them, and proposes various avenues of future work.
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Chapter 2

Optimal Transport

The unifying theme throughout this thesis is to extend the optimal transport problem

in various ways, and therefore we must begin by introducing the classic version of

this problem. The purpose of this chapter is to provide a concise but self-contained

introduction to OT and to introduce all the notions upon which the rest of this thesis

will build. Naturally, there is a myriad of possible ways such an introduction could

be presented, each with its own flavor and unique emphasis on the mathematical,

statistical or optimization facets of OT. Here, we focus on computational and geometric

aspects of the problem, and we closely follow the notations and conventions of Peyré

and Cuturi [139]. Nevertheless, we explicitly state these conventions in section 2.1.

The existence and regularity results discussed in Sections 2.6.1 and 2.6.2 are not

necessary for understating Chapter 3, but will become relevant for Chapters 4 and 5,

respectively.

2.1 Notation and Fundamentals

Sets, Spaces and Groups. Throughout this thesis, we denote sets as 𝑋, 𝑌 . When

these sets correspond to spaces, we use calligraphic variables 𝒳 ,𝒴 instead. For a

positive integer 𝑛, we denote by J𝑛K the set of all positive integers up to an including

𝑛, i.e., J𝑛K , {1, . . . , 𝑛}. Finally, O(𝑛) and SO(𝑛) are the orthogonal and special

orthogonal groups of order 𝑛.
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Vectors and Matrices. We denote vectors and matrices with bold font (e.g., x, X)

and their entries without it (𝑥𝑖, 𝑋𝑖𝑗). We use super-indices x(𝑖) to enumerate vectors,

and subindices x𝑗 to denote their entries. The operators ⊙ and ⊘ denote entry-wise

operations between vectors or matrices, i.e., for matrices A and B, A ⊙ B is their

Hadamard product. On the other hand, ⊗ denotes the Kronecker product (the outer

product for vectors), and for squared matrices we use ⊕ for their Kronecker sum (i.e.,

A ⊕ B = A ⊗ I𝑛 + I𝑚 ⊗ B. Note that in particular for vectors a ∈ R𝑛,b ∈ R𝑚 we

have [a ⊕ b]𝑖𝑗 = a𝑖 + b𝑗. For matrices A,B, we denote by ⟨A,B⟩ = ∑︀𝑖,𝑗[A]𝑖𝑗[B]𝑖𝑗

their Frobenius inner product.

Throughout this thesis, we will make use of the following matrix norms:

∙ Nuclear (trace) norm: ‖A‖* = Tr(
√
A*A) =

∑︀min{𝑚,𝑛}
𝑖=1 𝜎𝑖(A)

∙ Spectral norm: ‖A‖2 = 𝜎max(A)

∙ Frobenius norm: ‖A‖𝐹 =
√︀
Tr(A⊤A) =

√︁∑︀min{𝑚,𝑛}
𝑖=1 𝜎2

𝑖 (A)

∙ Schatten-p norm: ‖A‖𝑝 =
(︁∑︀min{𝑚,𝑛}

𝑖=1 𝜎𝑝
𝑖 (A)

)︁1/𝑝
Note that the Schatten-p norm includes the previous three as particular cases, for the

values 𝑝 = 1 (nuclear), 𝑝 = 2 (Frobenius) and 𝑝 =∞ (spectral).

Finally, diag(·) denotes the vector obtained by extracting the main diagonal of a

square matrix, while for a vector v ∈ R𝑛, [[v]] is a square 𝑛× 𝑛 matrix with v in its

main diagonal and zeros elsewhere, i.e., diag([[v]]) = v.

Functions and Probability Measures. We denote by 𝒫(𝒳 ) the set of probability
distributions over a metric space 𝒳 . We use lower-case greek letters for members of

this set, e.g., 𝛼 ∈ 𝒫(𝒳 ). We use 𝛿x to denote a Dirac point mass supported on x ∈ R𝑑,

and thus a discrete distribution 𝛼 ∈ 𝒫(R𝑑) supported on {x(𝑖)}𝑛𝑖=1 can be expressed as

𝛼 =
∑︀

𝑖 a𝑖𝛿x(𝑖) , where a ∈ Σ𝑛 is a vector of probability weights. For measures 𝛼 and 𝛽,

𝛼⊗𝛽 is their product measure on 𝒳×𝒴 , that is,
∫︀
𝒳×𝒴 𝑑(𝛼⊗𝛽)(𝑥, 𝑦) =

∫︀
𝒳×𝒴 𝑑𝛼(𝑥)𝑑𝛽(𝑦).

For a continuous map 𝑓 : 𝒳 → 𝒴 we note by 𝑓♯ : 𝒫(𝒳 )→ 𝒫(𝒴) its associated push-

forward operator, i.e., for any 𝜇 ∈ 𝒫(𝒳 ), 𝜈 = 𝑓♯(𝜇) is the push-forward measure
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satisfying: ∫︁
𝒴
ℎ(𝑦)𝑑𝜈(𝑦) =

∫︁
𝒳
ℎ(𝑓(𝑥))𝑑𝜇(𝑥) ∀ℎ ∈ 𝒞(𝒴)

The image of a function 𝑓 with domain 𝒳 is denoted as 𝑓 [𝒳 ] = {𝑓(𝑥) | 𝑥 ∈ 𝒳}.
Finally, 𝒞(𝒳 ) and 𝒞∞(𝒳 ) denote the space of continuous and smooth functions over

𝒳 , respectively.

2.2 Optimal Assignment and Monge’s Problem

Our journey into optimal transport begins with the assignment problem, one of the

most fundamental problems in combinatorial optimization. The notions of assignment,

matching, and correspondence underpin the theory optimal transport; played an

important role in its birth and development; and will feature prominently in this thesis

– all of which make this a natural start point for this introductory chapter.

Consider two sets of items of equal size, labeled for convenience with indices

𝑖, 𝑗 ∈ J𝑛K, and a cost matrix [C𝑖𝑗 ]𝑖∈J𝑛K,𝑗∈J𝑛K. The linear assignment problem consists of

finding a bijection 𝜎 : J𝑛K → J𝑛K which minimizes the total cost of matching these

two sets of items. Formally, the cost objective of this problem is

min
𝑛∑︁

𝑖=1

C𝑖,𝜎(𝑖). (2.1)

Note that this problem may have several optimal solutions, for example, if the cost

matrix is symmetric.

A generalization of this problem is due to Gaspard Monge [131], one of the

forefathers of optimal transport. Monge considered two discrete measures:

𝛼 =
𝑛∑︁

𝑖=1

a𝑖𝛿x(𝑖) , 𝛽 =
𝑚∑︁
𝑗=1

b𝑗𝛿y(𝑖) , (2.2)

over metric spaces 𝒳 ,𝒴, and a measurable cost function 𝑐 : 𝒳 × 𝒴 → R, which

represents the cost of transporting a unit of mass from 𝑥 ∈ 𝒳 to 𝑦 ∈ 𝒴. Monge’s

problem seeks a transport map 𝑇 : 𝒳 → 𝒴 that associates each source point x(𝑖) to
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a target point y(𝑖), and which pushes the mass of 𝛼 to 𝛽 at minimal cost. With the

notion on pushforward operator at hand, the problem can be succinctly expressed as:

inf
𝑇

{︂∫︁
𝒳
𝑐(x, 𝑇 (x))𝑑𝛼(x) | 𝑇♯𝛼 = 𝛽

}︂
, (2.3)

Note that while 𝑇 can still be expressed as an assignment 𝜎 : J𝑛K → J𝑚K, where

𝜎(𝑖) = 𝑗 iff 𝑇 (x(𝑖)) = y(𝑗), this problem is a generalized version of the assignment

problem. Indeed, for the particular case where 𝑛 = 𝑚 and the two measures are

uniform, Problem (2.3) is none other that (2.1). But, unlike before, the probability

vectors are now allowed to be non-uniform and of different size. However, note that

this generality comes at a price: the solution on Monge’s problem might not exist

if the measures are not compatible. This is clearly the case if 𝑛 < 𝑚, but also for

supports of the same size if the corresponding probability weight vectors are not be

compatible (e.g., consider a uniform vector a = 1
𝑛
1 and a sparse one b = 𝑒1).

Before ending this section, we note that for discrete measures 𝛼, 𝛽 as introduced

above, all relevant geometric information—i.e., the pairwise costs—can be compactly

captured the matrix C𝑖𝑗 = 𝑐(x(𝑖),y(𝑗)), after which all remaining relevant information

is purely probabilistic, i.e., contained in their probability weight vectors a and b. This

shifts the focus from transportation between measures into transportation between

histograms, whereby the bins in these histograms have associated costs, expressed

in [C𝑖𝑗]. This allows for a definition of the Monge (and subsequent Kantorovich)

problem without the need to appeal to the concept and terminology of measures,

namely, by defining the problem for a pair of histograms a ∈ Σ𝑛 and b ∈ Σ𝑚 with

associated bin-to-bin costs C ∈ R𝑛×𝑚 as finding an assignment 𝜎 between their bins,

which satisfies
∑︀

𝑖∈𝜎−1(𝑗) a𝑖 = b𝑗 and which minimizes the sum of costs
∑︀𝑛

𝑖=1C𝑖,𝜎(𝑖).

Owing to this observation, whenever dealing with discrete measures in this thesis we

will often interchangeably refer to the problem in terms of the measures 𝛼, 𝛽 or their

underlying probability vectors a and b.
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Discrete Optimal Transport Continuous Optimal Transport

x

y

Γ ∈ ℝn×m

min
Γ∈Π(a,b)

∑ij Γij c(x(i), y( j))
Π(a, b) = {Γ | Γ⊤1 = a, Γ1 = b}

Objective

Constraints Π(α, β) = {γ ∈ (() × *) | P)♯γ = α, P*♯γ = β}

β ∈ ((*)

α = ∑ i
a iδ x(i

), a ∈ Σ n

β = ∑j bjδy(i), b ∈ Σm

α ∈ (())

min
γ∈Π(α,β)

∫)×* c(x, y)dγ(x, Y )

γ ∈ (() × *)

Figure 2-1: The discrete and continuous versions of Kantorovich’s formulation of
optimal transport in a nutshell. In the former case, the transport coupling (i.e., the
optimization variable of interest) is finite and discrete (an 𝑛-by-𝑚 matrix Γ), while in
the latter it is a joint continuous measure 𝛾 on 𝒳 × 𝒴 .

2.3 Kantorovich Relaxation

The problem proposed by Monge introduced in the previous section captures the

intuition behind the transportation problem but has several limitations. Chief among

these is the fact that it is often ill-defined, i.e., a solution might not exist. Furthermore,

whenever the solution does exist, the combinatorial nature of the problem make it

hard to solve it in practice.

Kantorovich’s idea [97] was to relax Monge’s problem by replacing the deterministic

matching by a “fuzzy” or probabilistic correspondence, which allows for transportation

of mass from a single source point to various target points (and vice versa). This

phenomenon, often referred to as mass splitting, can be expressed via a coupling matrix

Γ ∈ R𝑛×𝑚
+ whose (𝑖, 𝑗)-th entry describes the amount of mass transported from point

(or bin) 𝑖 to point (or bin) 𝑗. Naturally, in order for this coupling to be meaningful,

the exact mass of the source distribution should be allocated to the target distribution

without any surplus, i.e., the row and column sums of this matrix should add up to a

and b, respectively. The set of admissible couplings, also known as the transportation

polytope, can be succinctly expressed as

Π(a,b) = {Γ ∈ R𝑛×𝑚
+ | Γ1𝑛 = a, Γ⊤1𝑛 = b}. (2.4)
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This set is never empty. Indeed, it is easy to verify that a⊗b ∈ Π(a,b). Considering, as

before, the cost matrix C ∈ R𝑛×𝑚, where C𝑖𝑗 = 𝑐(x(𝑖),y(𝑗)), Kantorovich’s relaxation

of the problem reads:

OT𝑐(a,b) , min
Γ∈Π(a,b)

⟨Γ,C⟩. (2.5)

where the notation OT𝑐(a,b) makes explicit the dependence of the problem on the

cost function 𝑐.

As before, the problem can be easily generalized from discrete (i.e. histograms) to

continuous measures 𝛼 and 𝛽. In that case, the couplings are now joint distributions

over the product space 𝒫(𝒳 × 𝒴), formally:

Definition 2.3.1 (Coupling). Let (𝒳 , 𝛼) and (𝒴 , 𝛽) be two probability spaces. A

coupling of 𝛼 and 𝛽 is a pair of random variables (𝑋, 𝑌 ) (marginally) distributed

according to these measures, i.e., 𝑋 ∼ 𝛼 and 𝑌 ∼ 𝛽. The law of (𝑋, 𝑌 ), that is, the

measure 𝛾 ∈ 𝒫(𝒳 ×𝒴) for which (𝑋, 𝑌 ) ∼ 𝛾 is called the coupling measure, or for

brevity, simply coupling.

Hence, the feasible set is now the set of all such couplings between 𝛼 and 𝛽, i.e.,

Π(𝛼, 𝛽) , {Γ ∈ 𝒫(𝒳 × 𝒴) | 𝑃𝒳 ♯Γ = 𝛼, 𝑃𝒴♯Γ = 𝛽}. (2.6)

The Kantorovich problem for general probability measures is thus:

OT𝑐(𝛼, 𝛽) , min
𝛾∈Π(𝛼,𝛽)

∫︁
𝒳×𝒴

𝑐(𝑥, 𝑦)𝑑𝛾(𝑥, 𝑦). (2.7)

The effect of relaxation makes this formulation, unlike Monge’s version (2.3), guaran-

teed to have a solution under very mild assumptions on the cost function [173].

Again, we emphasize that we can immediately recover Problem (2.5) from the

generalized Problem (2.7) by taking discrete measures of the form

𝛼 =
𝑛∑︁

𝑖=1

a𝑖𝛿x(𝑖) , 𝛽 =
𝑚∑︁
𝑗=1

b𝑗𝛿y(𝑖) (2.8)

and imposing the product measure to be of the form 𝛾 =
∑︀

𝑖𝑗 Γ𝑖𝑗𝛿(x(𝑖),y(𝑗)). For the
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discrete case, following the discussion at the end of the previous section, we will

often abuse the notation and interchangeably denote the problem and set of feasible

couplings in terms of the measures themselves or their associated probability vectors,

i.e., we write Π(a,b) or Π(𝛼, 𝛽), and OT(a,b) or OT(𝛼, 𝛽), interchangeably.

Whenever 𝒳 is equipped with a metric 𝑑𝒳 , it is natural to use it as ground cost,

e.g., 𝑐(𝑥, 𝑦) = 𝑑𝒳 (𝑥, 𝑦)𝑝, with 𝑝 ≥ 1. In such case, the transportation cost in Equation

(2.7) is called the 𝑝-Wasserstein distance, which we denote as W𝑝(𝛼, 𝛽) , OT𝑑𝑝𝒳
(𝛼, 𝛽).

The case 𝑝 = 1 is also known as the Kantorovich-Rubinstein in statistics or the Earth

Mover’s Distance in computer vision [148]. The Proposition below shows that these

are indeed proper distances.

Proposition 2.3.2 (Proof adapted form [174]). Assume 𝒳 = 𝒴, and suppose (𝒳 , 𝑑) is

a metric space and that 𝛼, 𝛽 ∈ 𝒫(𝒳 ). Then, W𝑝(𝛼, 𝛽) = inf𝛾∈Π(𝛼,𝛽)

∫︀
𝒳×𝒳 𝑑(𝑥, 𝑦)𝑑𝛾(𝑥, 𝑦)

is a metric.

Proof. The symmetry of W𝑝 is trivially inherited from that of 𝑑. On the other hand,

since 𝑑 is a metric, it must satisfy 𝑑(𝑥, 𝑦) = 0 iff 𝑥 = 𝑦. Therefore, if W𝑝(𝛼, 𝛽) = 0

it can only be that there exists a transportation plan entirely concentrated on the

diagonal (𝑦 = 𝑥) in 𝒳 × 𝒴, so that 𝛽 = Id♯𝛼 = 𝛼. Now consider probability

measures 𝛼1, 𝛼2, 𝛼3 ∈ 𝒫(𝒳 ). Let (𝑋1, 𝑋2) be an optimal coupling of 𝛼1 and 𝛼2, with

associated measure 𝛾*1,2, and analogously for (𝑋2, 𝑋3) and 𝛾*2,3 with respect to 𝛼2 and

𝛼3. By the Gluing Lemma [24], there exists random variables (𝑋 ′1, 𝑋 ′2, 𝑋 ′3) such that

(𝑋 ′1, 𝑋
′
2)

𝑑
= (𝑋1, 𝑋2) and (𝑋 ′2, 𝑋

′
3)

𝑑
= (𝑋2, 𝑋3). Hence, (𝑋 ′1, 𝑋 ′3) is a coupling of 𝛼1

and 𝛼3, which in turn implies:

W𝑝(𝛼1, 𝛼3) ≤
(︀
E[𝑑(𝑋 ′1, 𝑋

′
3)

𝑝]
)︀1/𝑝 (optimality of W𝑝)

≤
(︀
E[𝑑(𝑋

′
1, 𝑋

′
2)

𝑝 + 𝑑(𝑋 ′2, 𝑋
′
3)

𝑝]
)︀1/𝑝 (𝑑 is a metric)

≤
(︀
E 𝑑(𝑋 ′1, 𝑋

′
2)

𝑝
)︀1/𝑝

+
(︀
E 𝑑(𝑋 ′2, 𝑋

′
3)

𝑝
)︀1/𝑝 (Minkowski’s inequality)

= W𝑝(𝛼1, 𝛼2) +W𝑝(𝛼2, 𝛼3) (optimality of (𝑋 ′1, 𝑋
′
2)

So W𝑝 satisfies the triangle inequality. This concludes the proof.
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Kantorovich’s problem has an appealing probabilistic interpretation. It is easy to

verify that equation (2.7) can be equivalently written as

min
(𝑋,𝑌 )

{︀
E(𝑋,𝑌 ) 𝑐(𝑋, 𝑌 )

⃒⃒
𝑋 ∼ 𝛼, 𝑌 ∼ 𝛽

}︀
(2.9)

for random variables 𝑋 and 𝑌 with distributed according to 𝛼 and 𝛽 respectively,

and with an underlying joint distribution given by 𝛾 ∈ Π(𝛼, 𝛽).

2.4 Entropic Regularization

The high computational cost of solving the Kantorovich problem (which we discuss in

the next section) has led to various schemes to solve it approximately. One of the most

popular such approaches is to add an entropy regularization term to the objective

[145, 45]. For this we define the discrete entropy of a coupling as

H(Γ) , −
∑︁
𝑖,𝑗

Γ𝑖𝑗(log Γ𝑖𝑗 − 1) = −⟨Γ, log Γ− 1𝑛×𝑚⟩, (2.10)

and use it to obtain a regularized version of problem (2.5) as follows:

OT𝜀
𝑐(a,b) , min

Γ∈Π(a,b)
⟨Γ,C⟩ − 𝜀H(Γ). (2.11)

To generalize this to continuous measures we will need an additional concept, the

Kullback-Leibler (KL) divergence between couplings, defined as:

KL(Γ ‖ 𝜅) ,
∑︁
𝑖,𝑗

Γ𝑖𝑗 log
Γ𝑖𝑗

𝜅𝑖𝑗
− Γ𝑖𝑗 + 𝜅𝑖𝑗 (2.12)

The following Lemma shows that we can equivalently write the entropy regularized

problem it terms of this divergence.

Lemma 2.4.1. The entropy-regularized objective (2.11) is equivalent to:

min
Γ∈Π(a,b)

⟨Γ,C⟩+ 𝜀KL(Γ ‖ a⊗ b) (2.13)
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Proof. With our definitions (2.10) and (2.12) it can be immediately seen that

KL(Γ ‖ a⊗b) =
∑︁
𝑖,𝑗

Γ𝑖𝑗 log
Γ𝑖𝑗

a𝑖b𝑗
−Γ𝑖𝑗+a𝑖b𝑗 = −H(Γ)−

∑︁
𝑖,𝑗

Γ𝑖𝑗 log a𝑖b𝑗+a𝑖b𝑗 (2.14)

For the second of these terms, we have

∑︁
𝑖,𝑗

Γ𝑖𝑗 log a𝑖b𝑗 = ⟨Γ, log(a⊗ b)⟩ = ⟨Γ, log a⊕ logb⟩ =

= ⟨Γ1𝑛, log a⟩+ ⟨logb,Γ⊤1𝑚⟩ = ⟨a, log a⟩+ ⟨b, logb⟩,

where the log acts element-wise in all cases. Therefore, only the first term in (2.14)

depends on Γ, and thus it is clear that Problems (2.11) and (2.13) are equivalent.

With this, we can naturally extend Problem (2.11) to continuous measures, thus

defining an entropy-regularized version of Problem (2.7):

OT𝜀
𝑐(𝛼, 𝛽) , min

Γ∈Π(𝛼,𝛽)

∫︁
𝒳×𝒴

𝑐(𝑥, 𝑦)𝑑𝛾(𝑥, 𝑦) + 𝜀KL(Γ ‖ 𝛼⊗ 𝛽) (2.15)

In analogy to the classic Wasserstein distance, when 𝑐(𝑥, 𝑦) = ‖𝑥− 𝑦‖𝑝 we denote this

as W𝜀
𝑝, dropping the 𝑝 from the notation when it is clear from the context.

The first observation about this regularized formulation of optimal transport is

that the objective is now 𝜀-strongly convex, and therefore it has a unique optimal

solution. Moreover, the following proposition (whose proof can be found in Peyré and

Cuturi [139]) shows that entropy-regularization leads to a well-behaved approximation

of the original Kantorovich problem:

Proposition 2.4.2. Let Γ*𝜀 be the unique solution of Problem (2.11). Then

Γ*𝜀
𝜀→0−→ argmin

Γ
{−H(Γ) | Γ ∈ Π(a,b), ⟨Γ,C⟩ = OT𝑐(a,b)}

So that, in particular: OT𝜀
𝑐(a,b)

𝜀→0−→ OT𝑐(a,b).

In other words, this result shows that the solution of the regularized problem
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converges to a solution of the unregularized one, which in fact is the solution with

maximal entropy.

Besides computational advantages—which we discuss in Section 2.5— regularizing

the OT problem often leads to better empirical performance in applications where

having denser correspondences is beneficial, e.g., when the support points correspond

to noisy features [9]. If sparse matchings are nevertheless desired, there exist methods

to encourage sparsity and still take advantage of regularized objectives [162, 27].

2.5 Computation

The discrete version of Kantorovich’s problem (Eq (2.5)) is a linear program. Practical

methods to solve it include Orlin’s algorithm and interior-point methods, both of which

have 𝑂(𝑛3 log 𝑛) complexity [137]. As discussed before, this is often prohibitive in

machine learning applications, which has led to various approximations of the problem,

including the celebrated entropy-regularization scheme discussed in Section 2.4.

The regularized version of discrete OT (Eq. (2.11)) is a strictly convex optimization

problem. Below we show that its solution has a simple analytic expression.

Proposition 2.5.1 (adapted from [139]). The solution to (2.11) is unique and has

the form Γ* = [[u]]K[[v]], for K = 𝑒−
C
𝜆 and some u ∈ R𝑛

+, v ∈ R𝑚
+ .

Proof. The Lagrangian of (2.11) is given by

ℒ(Γ, f ,g) , ⟨Γ,C⟩ − 𝜀H(Γ)− ⟨f ,Γ1𝑚 − a⟩ − ⟨g,Γ⊤1𝑚 − b⟩

for dual variables f ∈ R𝑛 and g ∈ R𝑚. Using basic algebraic manipulations and

grouping all terms that do not depend on Γ in 𝜉, we can rewrite this as

ℒ(Γ, f ,g) = ⟨Γ,C⟩ − 𝜀⟨Γ,Γ− 1𝑛×𝑚⟩ − ⟨Γ, f ⊕ g⟩+ 𝜉 (2.16)
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Elementary matrix calculus shows that the first order conditions are given by

𝜕ℒ
𝜕Γ

= C+ 𝜀 log Γ− f ⊕ g = 0𝑛×𝑚

Hence,

Γ* = exp

{︂
1
𝜀

(︀
f⊕g−C

)︀}︂
= exp(1

𝜀
(f⊕g))⊙exp(1

𝜀
(−C)) = [[exp 1

𝜀
f ]] exp(1

𝜀
(−C))[[exp 1

𝜀
g]]

where the last equality is a well-known property of the Hadamard product. Therefore,

letting u , exp 1
𝜀
f and v , exp 1

𝜀
g the result holds.

The vectors u and v of Proposition 2.5.1 can be obtained efficiently via the Sinkhorn-

Knopp1 algorithm, an approach popularized in the machine learning community by

Cuturi [45]. With Proposition (2.5.1) in hand, its derivation is simple. Using the

form of the solution Γ*, and knowing that it must satisfy the marginal constraints, we

arrive at the following conditions:

[[u]]K[[v]]1𝑚 = a =⇒ u⊙ (Kv) = a (2.17)

[[v]]K⊤[[u]]1𝑛 = b =⇒ v ⊙ (K⊤u) = b (2.18)

Whence the optimal u,v can be found via fixed-point iterations, i.e., computing in

alternation:

u← a⊘Kv and v← b⊘K⊤u, (2.19)

where we recall that ⊘ denotes entry-wise division. Regardless of the initialization,

these iterations converge to the same solution Γ* (albeit with potentially different

vectors u, v) [139]. Altschuler et al. [3] showed that after 𝑂(‖C‖3∞ log(𝑛)𝜏−3) iterations

of Sinkhorn’s algorithm, the reconstructed solution P satisfies ⟨P,C⟩ ≤ OT(a,b) + 𝜏 ,

which in turn implies that this method provides a 𝜏 -approximate solution of the

unregularized Kantorovich problem in 𝑂(𝑛2 log 𝑛𝜏−3) time.
1Although seemingly first proposed a century ago by Yule [179], this simple algorithm has been

rediscovered in many contexts, and is thus known by a myriad of names: Sinkhorn, Sinkhorn-Knopp,
Bregman Iterations, soft-assign, iterative proportional fitting procedure, among others. The first proof
of convergence is due to Sinkhorn [160], which is where it gets its most popular name.
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2.6 Theoretical Guarantees

2.6.1 Euclidean case

Whenever optimal transport is used primarily with the goal of obtaining correspon-

dences (as opposed to only as a means to compute a cost/distance between distribu-

tions), there are various theoretical considerations that become crucial.

The first of such considerations pertains to the nature of the solution, i.e., the

optimal coupling 𝛾* which minimizes the cost (2.7). When the end goal is to transport

points from one space to the other, the best-case scenario would be if the optimal 𝛾

happens to be a “hard” deterministic mapping. A celebrated result by Brenier [33,

34] shows that this indeed the case for the quadratic cost,2 i.e., for the 2-Wasserstein

distance. Even when solving the problem approximately with entropic regularization

(Eq. (2.15)), this result guarantees that the solution found in this way converges to a

deterministic mapping as 𝜀→ 0.

Now, assuming now that such a map exists, the next aspect we might be interested

in is its smoothness. Intuitively, smoothness of this mapping is desirable since it is

more likely to lead to robust matchings in the context of correspondences, even if,

again, the argument holds asymptotically for the regularized problem. This, clearly,

is a very strong property to require. While not even continuity can be guaranteed

in general [13], again for the quadratic-cost things are simpler: if the source and

target densities are smooth and the support of the target distribution satisfies suitable

convexity assumptions, the optimal map is guaranteed to be smooth too [36, 37].

2.6.2 Riemannian manifold case

Extending the problem beyond Euclidean to more general spaces has been one of the

central questions theoretical optimal transport research over the past decades [173].

For obvious reasons, here we focus the discussion on results related to hyperbolic

spaces, and more generally, to Riemannian manifolds.

2This result holds in more general settings. We refer the reader to [153, 13] for further details.

40



Let us first note that Problem (2.7) is well-defined for any complete and separable

metric space 𝒳 . Since the arc-length metric of a Riemannian manifold allows for

the direct construction of an accompanying metric space (𝒳 , 𝑑𝒳 ), then OT can be

defined over those too. However, some of the theoretical results of their Euclidean

counterparts do not transfer that easily to the Riemannian case [13]. Nevertheless,

the existence and uniqueness of the optimal transportation plan 𝛾*, which in addition

is induced by a transport map 𝑇 , can be guaranteed with mild regularity conditions

on the source distribution 𝛼. This was first shown in seminal work by McCann [123].

The result, which acts as a Riemannian analogue of that of Brenier for the Euclidean

setting [33], is shown below as presented by Ambrosio and Gigli [13]:

Theorem 2.6.1 (McCann, version of [13]). Let 𝑀 be a smooth, compact Riemannian

manifold without boundary and 𝛼 ∈ 𝒫(ℳ). Then the following are equivalent:

(i) ∀𝛽 ∈ 𝒫(ℳ), there exists a unique optimal 𝛾 ∈ Π(𝛼, 𝛽), and this plan is induced

by a map 𝑇 .

(ii) 𝛼 is regular.

If either (i) or (ii) holds, the optimal 𝑇 can be written as 𝑥 ↦→ exp𝑥(−∇𝜑(𝑥)) for

some c-concave function 𝜑 :ℳ→ R.

The question of regularity of the optimal map, on the other hand, is much more

delicate now than in the Euclidean case [13, 122, 119]. In addition to the suitable

convexity assumptions on the support of the target density, a restrictive structural

condition, known as the Ma-Trudinger-Wang (MTW) condition [122], needs to be

imposed on the cost in order to guarantee continuity of the optimal map.

Unfortunately for the setting of Chapter 5, in the case of Riemannian manifolds

the MTW condition for the usual quadratic cost 𝑐 = 𝑑2/2 is so restrictive that it

implies that 𝒳 has non-negative sectional curvature [119], which rules out hyperbolic

spaces. However, a recent sequence of remarkable results Lee and Li [113] and Li [117]

prove that for simple variations of the Riemannian metric 𝑑 on hyperbolic spaces,

smoothness is again guaranteed:
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Theorem 2.6.2 (Lee and Li, [113]). Let 𝑑 be the Riemannian distance function

on a manifold of constant sectional curvature −1; then the cost functions − cosh ∘𝑑
and − log ∘(1 + cosh) ∘ 𝑑 satisfy the strong MTW condition, and the cost functions

± log ∘ cosh ∘𝑑 satisfy the weak MTW condition.

Consequently, matching approaches based on optimal transport over hyperbolic

spaces—as the one proposed in Chapter 5—are well supported by theory too, with the

results presented here guaranteeing the existence of ideal (even if perhaps unachievable)

smooth solutions, suggesting that even approximate solutions to OT objectives are

likely to yield relatively stable correspondences.

2.7 Optimal Transport as a Learning Loss

Recent work has proposed using Wasserstein distances as differentiable loss functions,

particularly in the context of deep generative modeling [14, 71, 152]. When used as a

loss function, the entropy-regularized version (Eq. (2.15)) has the undesirable property

that W𝑝,𝜀(𝛼, 𝛼) ̸= 0, in addition to having biased sample gradients [21].

In response to this, various recent works Genevay et al. [71], Bellemare et al. [21],

and Salimans et al. [152], consider instead the Sinkhorn Divergence:

SD𝜀(𝛼, 𝛽) ,W𝜀
𝑝(𝛼, 𝛽)− 1

2

(︀
W𝜀

𝑝(𝛼, 𝛼) +W𝜀
𝑝(𝛽, 𝛽)

)︀
. (2.20)

Besides being a proper divergence and providing unbiased gradients, this function is

convex, smooth and positive-definite [62], and its sample complexity is well character-

ized [69], all of which make it an appealing loss function.
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Chapter 3

Optimal Transport with

Structured Costs

This chapter is based on Alvarez-Melis, Jaakkola, and Jegelka [9].

In this chapter, we develop a framework to incorporate structural information

directly into the cost objective of the optimal transport problem. This novel formulation

opens avenues to a much richer class of (nonlinear) cost functions, allowing us to

encode known or desired interactions of mappings, such as grouping constraints,

correlations, and explicitly modeling topological information that is present, for

instance, in sequences and graphs.

Our main tool for modeling structure is submodularity – a fundamental concept from

combinatorial optimization, which we review in Section 3.2.1. Submodular functions

possess two highly desirable properties for our problem: (1) they naturally encode

combinatorial structure, via diminishing returns and as combinatorial rank functions;

and (2) their geometry leads to efficient algorithms. Indeed, the tractability of this

novel nonlinear formulation of OT arises from the polytopes induced by submodular

cost functions.

The resulting combination of the geometries of transportation and submodularity

leads to a problem with rich, favorable polyhedral structure and connections to

game theory and saddle point optimization. We leverage this structure to solve
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this submodular optimal transport problem via a saddle-point mirror-prox algorithm

involving alternating projections onto the polytope defined by the transportation

constraints and the base polytope associated with the submodular cost function. The

former can be done efficiently through Sinkhorn iterations, while the latter, can be

solved exactly in 𝑂(𝑛 log 𝑛) time for a suitable class of submodular functions.

Via various applications and experiments, we explore the characteristics of the

solutions to this novel transportation problem and demonstrate the efficiency of our

algorithms. We show how different submodular functions yield solutions that inter-

polate between strictly structure-aware transportation plans and structure-agnostic

regularized versions of the problem. Besides these synthetic experiments, we evaluate

our framework in various real-life applications: domain adaption for digit classification,

color transfer, and sentence similarity prediction. In both cases, introducing structure

leads to better empirical results.

3.1 Motivation and Applications

A concrete example of the need to include structure arises when applying optimal

transport to domain adaptation, where a subset of the source points to be matched

have known class labels. In this case, we may desire source points with the same label

to be matched coherently to the same compact region of the target space, preserving

compact classes, and not be split into disjoint, distant locations [44].

In the context of randomized experiments, when pairing control and treatment

units in observational studies of treatment effects it is beneficial to compare treated

and control subjects from the same “natural block” (e.g., family, hospital) so as to

minimize the difference between unmeasured covariates [142]. In all these examples, the

additional structure essentially seeks correlations in the mappings of “similar” source

points. Such dependencies, however, cannot be induced by standard formulations of

optimal transport whose cost is separable in the mapping variables;1 they require

1The original optimal transport formulation with cost
∑︀

𝑖𝑗 𝑐𝑖𝑗Γ𝑖𝑗 is linear in the mappings Γ𝑖𝑗 ,
Γ𝑘𝑙 of separate source locations 𝑖, 𝑘; the mappings are counted independently.
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nonlinear interactions.

A different motivation comes from the need to compare probability distributions

over combinatorial objects (e.g., sequences, trees or graphs), in a manner that takes

into account both the node-level properties (i.e, the atom-level geometry) and the

relationship between them (the graph-level topology). This is a common problem with

applications to computing similarity between sentences [106], phylogenetic trees [46]

or social networks [23].

3.2 Preliminaries

3.2.1 Submodularity

A set function 𝐹 : 2𝑉 → R over a ground set 𝑉 of items is called submodular if it

satisfies diminishing returns: for all sets 𝑆 ⊆ 𝑇 ⊆ 𝑉 and all element 𝑣 in 𝑉 ∖ 𝑇 , it
holds that

𝐹 (𝑆 ∪ {𝑣})− 𝐹 (𝑆) ≥ 𝐹 (𝑇 ∪ {𝑣})− 𝐹 (𝑇 ). (3.1)

Equivalently, submodularity can be characterized by the following union-intersection

property:

∀𝑆, 𝑇 ⊆ 𝑉 𝐹 (𝑆) + 𝐹 (𝑇 ) ≥ 𝐹 (𝑆 ∪ 𝑇 ) + 𝐹 (𝑆 ∩ 𝑇 ).

The function 𝐹 is called supermodular if −𝐹 is submodular, and modular if it is both

sub- and supermodular.

It is easy to see that modular functions are linear in the sense that they can

always be written as 𝐹 (𝑆) =
∑︀

𝑒∈𝑆 𝑤(𝑒) for some weight function 𝑤 : 𝑉 → R. This

result suggests that we can identify modular set functions over a ground set 𝑉 of 𝑛

items with vectors in R𝑛, by labeling (without loss of generality) these items with

positive integers (i.e., 𝑉 = J𝑛K), and defining 𝑦𝑆 =
∑︀

𝑖∈𝑆 y𝑖. With this, every modular

function 𝐹 corresponds to a unique y𝐹 ∈ R𝑛, and we have 𝐹 (𝑆) ≡ 𝑦𝐹𝑆 . We will use

this notation even in the more general case where 𝐹 is not modular.

In motivating the importance of submodularity, Lovász [120] points out that

submodular set functions play a similar role in discrete optimization to that of
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convex functions in continuous optimization. He bases this analogy in the fact that

they both occur naturally in many contexts, are preserved under various operations,

have sufficient structure to yield a mathematically beautiful theory and come with

efficient minimization. The analogy to convexity is nevertheless delicate and often

counter-intuitive, because even though certain properties of submodularity are indeed

shared with convexity (e.g., convex relaxations, duality theory), some other are in fact

reminiscent of concavity (e.g., diminishing derivative).

As mentioned before, the tractability of submodular functions arises from the

polytopes they define, and to which we now turn our attention. Every submodular

function has an associated polyhedron (known as the base polyhedron), which is given

by

𝒫𝐹 , {y ∈ R𝑛 |
∑︁
𝑠∈𝑆

𝑦𝑠 ≤ 𝐹 (𝑆) for all 𝑆 ⊆ 𝑉 }.

An intuitive way to understand this object is the following. For every subset 𝑆 of the

𝑛 axes in R𝑛, 𝐹 implicitly defines a hyperplane which separates those points y ∈ R𝑛

for which 𝑦𝑆 ≤ 𝐹 (𝑆)—call this the set of compatible points— from those for which

𝑦𝑆 > 𝐹 (𝑆). Note that there are 2𝑛 of these hyperplanes. The intersection of all

the sets of compatible points is the base polyhedron. The base polytope of 𝐹 is the

hyper -face of this polyhedron for which the inequalities are active, that is,

ℬ𝐹 , {y ∈ R|𝑉 | | 𝑦𝑉 = 𝐹 (𝑉 ); 𝑦𝑆 ≤ 𝐹 (𝑆) ∀𝑆 ⊆ 𝑉 } = {𝑦 ∈ 𝒫𝐹 |
∑︁
𝑠∈𝑆

𝑦𝑠 = 𝐹 (𝑆)}.

Base polytopes generalize matroid polytopes (convex hulls of combinatorial “indepen-

dent sets”), and lead to strong links with convexity.

Another fundamental concept in submodular optimization is the Lovász extension

of a set function 𝐹 , which extends its domain from 2𝑉 to R𝑛
+ [120]. For any 𝑤 ∈ R𝑛

+,

order its coordinates so that 𝑤1 ≥ · · · ≥ 𝑤𝑛 and define 𝑤𝑛+1 = 0 and 𝑆𝑗 = {𝑖|𝑤𝑖 ≥ 𝑤𝑗}.
The Lovász extension 𝑓 of 𝐹 is

𝑓(𝑤) =
𝑛∑︁

𝑗=1

(𝑤𝑗 − 𝑤𝑗+1)𝐹 (𝑆𝑗). (3.2)
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Fortunately, when 𝐹 is submodular its Lovász extension can be equivalently expressed

in a much simpler form, as a support function over the base polytope:

𝑓(𝑤) = max
x∈ℬ𝐹

w⊤x. (3.3)

It is readily apparent that, in this case, 𝑓 is convex. In fact, it was shown by Lovász

himself that 𝑓 is convex if and only if 𝐹 is submodular [120]. Since we will be dealing

with submodular functions throughout this chapter, our treatment of the Lovász

extension will always rely on the expression (3.3). In fact, one of the two proposed

optimization approaches will crucially rely on this definition of 𝑓 as the solution of a

maximization problem.

The tractability of submodular minimization that we have been alluding to through-

out this section rests upon two main ingredients. First, the Lovász extension gives an

exact relaxation of its corresponding submodular function, in the sense that the convex

hull of all minimizers of the discrete function 𝐹 is exactly the set of minimizers of the

extension [19]. Second is the fact that—despite the exponentially many constraints—

linear optimization over the base polytope can be done efficiently. Pioneering work by

Edmonds [54] showed that the Lovász extension can be computed efficiently by a form

of sorting (thus, in only 𝑂(𝑛 log 𝑛) time) which is often known as Edmonds’ algorithm.

In fact, this algorithm is constructive, i.e., it returns the maximizing argument x* in

Equation (3.3). This, in turn, implies that subgradients of 𝑓 can be obtained by the

same procedure.

Although beyond the scope of this thesis, it is worth mentioning that while

unconstrained submodular minimization is tractable and various efficient polynomial

algorithms for it exist [78, 114, 38], even slight variations of the problem quickly

become intractable. For example, simple constraints like cardinality lower bounds

make the problem NP-hard. Similarly, submodular maximization is usually NP-hard

in most settings, admitting only polynomial time constant approximation algorithms

[133, 60]. We refer the interested reader to the surveys by Krause and Golovin [105]

and [19] for further details.
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3.3 Optimal Transport with Submodular Costs

In the classical formulation of optimal transport (2.5), the total cost ⟨Γ,C⟩ is linear
in the decision variables Γ. This means each potential pairwise assignment Γ𝑖𝑗 (i.e.,

every pair (a𝑖,b𝑗)) is treated independently. But, in some applications, it is desirable

to bias certain points to be mapped together, i.e., to introduce dependencies between

assignments. In our running example of domain adaptation, we want points from the

same class to be transported “together”. Intuitively, the joint cost of mapping points

from the same class to close-by target points should be lower than splitting them

apart, even if the transportation distances are the same.

More generally, we might want to encourage mappings of subspaces to subspaces, or,

on the contrary, discourage some combinations of assignments. A flexible framework

to express such interactions over discrete choices is via submodular functions [118,

93, 100]. Intuitively, property (3.1) implies that the marginal cost of an additional

element decreases as more “compatible” items have already been chosen, and thus it

is relatively cheaper to select compatible items together (e.g., items from the same

group) than non-compatible ones.

To see how submodularity can be leveraged for optimal transport, consider for

a moment Monge’s formulation (2.3), where we seek a matching of the elements

in 𝑈 and 𝑉 with minimal cost. Any matching can be expressed as a set of edges

𝑆 = {(𝑢1, 𝑣1), . . . , (𝑢𝑘, 𝑣𝑘)}, and its cost as a set function 𝐹 : 2|𝑈 |×|𝑉 | → R+. Under this

formulation, the classic definition of optimal transport uses a modular cost function:

𝐹 (𝑆) =
∑︁

(𝑢,𝑣)∈𝑆
𝑐𝑢𝑣,

so the cost of the additional match (𝑢, 𝑣) is the same, namely 𝑐𝑢𝑣, regardless of what

assignments have already been made. If we let 𝐹 be submodular instead, property

(3.1) implies that the marginal cost of additional edges decreases as the set of matches

grows. The magnitude of decrease depends on 𝑆, the new item 𝑣, and the choice of 𝐹 .

We will channel this decrease to occur only when the additional “item” (assignment
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(𝑢, 𝑣)) is compatible with already chosen “items”.

3.3.1 Submodular cost functions

The rich class of submodular functions allows various types of structural information

(compatibility) to be encoded in the cost function. As an example, recall the local

consistency structure induced by class labels in domain adaptation. We may divide

the support of the source and target distributions 𝛼 and 𝛽 into regions (subsets of

samples) 𝑈𝑘 ⊂ 𝑈 and 𝑉𝑙 ⊂ 𝑉 . These induce a partition of the set of assignments too:

𝐸𝑘𝑙 := {(𝑢, 𝑣) | 𝑢 ∈ 𝑈𝑘, 𝑣 ∈ 𝑉𝑙}.

Now define

𝐹 (𝑆) :=
∑︁
𝑘𝑙

𝐹𝑘𝑙(𝑆 ∩ 𝐸𝑘𝑙), (3.4)

where each 𝐹𝑘𝑙 is submodular with reduced support 𝐸𝑘𝑙. One possible choice for 𝐹𝑘𝑙 is

𝐹𝑘𝑙(𝑆) = 𝑔𝑘𝑙

(︂ ∑︁
(𝑢,𝑣)∈𝑆∩𝐸𝑘𝑙

𝐶𝑢𝑣

)︂
, (3.5)

where 𝐶𝑖𝑗 ∈ R+ is the ground metric cost between 𝑥𝑠𝑖 and 𝑥𝑡𝑗, and 𝑔𝑘𝑙 : R → R are

scalar monotone increasing concave functions whose effect is to dampen the cost of

additional edges between the partitions 𝑈𝑙 and 𝑉𝑘, thus encouraging edge selections

that map most of the mass in 𝑈𝑙 to the same 𝑉𝑘. To grant discounts only after a

sufficient number of assignments have been chosen from a group, we may use an

explicit threshold, e.g.,

𝑔𝑘𝑙(𝑥) = min{𝑥, 𝛼}+
√︀

[𝑥− 𝛼]+. (3.6)

We use such functions in the clustered point matching, domain adaptation and sentence

similarity experiments in Section 3.6. We may also use subspaces for encoding structure.

For example, a smoother grouping of assignments (𝑢, 𝑣) could be encoded by stacking

feature vectors for 𝑢 and 𝑣 into one vector 𝜑(𝑢, 𝑣) and taking 𝐹 (𝑆) = rank(Φ𝑆),
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i.e., the rank of the matrix of features of the selected assignments, or the volume

𝐹 (𝑆) = log det(Φ⊤𝑆Φ𝑆). This function captures discrete groups if the feature vectors are

indicator vectors of groups. Other important examples include hierarchical structures

and coverage functions.

3.3.2 Submodular optimal transport

The functions defined above have discrete domains, i.e., they correspond to discrete

matchings, but we really seek a formulation like that of original Problem (2.5) with

continuous, fractional assignments. The key to obtaining a nonlinear, structured

analog of Kantorovich’s problem is the convex Lovász extension 𝑓 of the submodular

function 𝐹 . The above intuitions and effects carry over, and we define the submodular

optimal transport problem as

min
Γ∈Π(a,b)

𝑓(Γ) ≡ min
Γ∈Π(a,b)

max
𝜅∈ℬ𝐹
⟨Γ, 𝜅⟩. (3.7)

The right hand side follows since the Lovász extension is also the support function

of the submodular base polytope. This relaxation has another advantage: while the

discrete version is hard to even solve approximately [72], problem (3.7) is a convex

optimization problem on Γ.

The new structured optimal transport problem recovers many desirable properties

of the original optimal transport formulation. For example, the “distance” implied by

it is a semi-metric under mild assumptions, as we show in the following Theorem.

Theorem 3.3.1. Suppose the ground cost 𝐶(·, ·) is a metric and that 𝐹 is a submodular

non-decreasing function such that 𝐹 (∅) = 0 and 𝐹 ({(𝑖, 𝑗)}) > 0 iff 𝐶(𝑥𝑖, 𝑦𝑗) > 0. Then

𝑑𝐹 (𝛼, 𝛽) = minΓ∈Π(a,b) 𝑓(Γ) is a semi-metric.

Proof. Let C ∈ R𝑛×𝑚 be the cost matrix associated with 𝑐, i.e. C𝑖𝑗 = 𝑐(𝑥𝑖, 𝑦𝑗) for

𝑖 ∈ J𝑛K and 𝑗 ∈ J𝑚K. In addition, let a and b be the vectors of probability weights of

𝛼 and 𝛽, respectively, i.e. 𝛼 =
∑︀𝑛

𝑖 a𝑖𝛿x(𝑖) and 𝛽 =
∑︀𝑚

𝑗 b𝑗𝛿y(𝑗) .

Since 𝑐(·, ·) is a metric, every C𝑖𝑗 is non-negative. Furthermore, since we assume
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support points are not duplicated, C has at most 𝑛 zero entries, and the rest are strictly

positive. This, combined with the fact that 𝐹 is non-decreasing, implies 𝐹 (𝑆) ≥ 0

for every 𝑆 ⊆ 𝑉 , and therefore its Lovász extension must also be non-negative. In

particular,

𝑑𝐹 (𝛼, 𝛽) = min
Γ∈Π(a,b)

𝑓(Γ) ≥ 0 ∀𝛼, 𝛽 (3.8)

Now, suppose 𝛼 = 𝛽, and without loss of generality, assume the support points

are indexed such that x(𝑖) = y(𝑖) for every 𝑖. In addition, we must have a = b, so

Γ = [[a]] ∈ Π(a,b). On the other hand, since 𝑐 is a metric C𝑖𝑖 = 0 for every 𝑖, which

in turn implies that for any 𝜅 ∈ ℬ𝐹 and every 𝑖, 𝜅𝑖𝑖 ≤ 𝐹 ({𝑖, 𝑖}) = 0. By (3.8) and the

minimax equilibrium properties, we have

0 ≤ 𝑑𝐹 (𝛼, 𝛽) = ⟨Γ*, 𝜅*⟩ ≤ ⟨Γ, 𝜅*⟩ ∀Γ ∈ Π(a,b)

In particular, for Γ = diag(p), we get

0 ≤ 𝑑𝐹 (𝛼, 𝛽) ≤
∑︁
𝑖

𝑝𝑖𝜅
*
𝑖𝑖 ≤ 0

So we conclude that 𝑑𝐹 (𝛼, 𝛽) = 0. Conversely, let 𝑑𝐹 (𝛼, 𝛽) = 0, and suppose, for the

sake of contradiction, that 𝛼 ̸= 𝛽. Then, at least one of the following is true:
(i) a ̸= b

(ii) the support points are different, i.e. there is no reordering of indices such that

x(𝑖) = y(𝑖) for every 𝑖.

If (i) is true, Π(a,b) cannot be a permutation matrix, so in particular Γ* has at least

𝑛+ 1 positive entries. We can thus find a 𝜅 ∈ ℬ𝐹 which has positive weights in all

those entries. In that case, we have ⟨Γ*, �̂�⟩ > 0, a contradiction. Now, if on the other

hand (ii) is true, then C has strictly less than 𝑛 zero entries. This, by our assumptions

on 𝐹 , means that there exist 𝜅 ∈ ℬ𝐹 with less than 𝑛 non negative entries. Any such

matrix will have ⟨Γ*, 𝜅⟩ > 0, a contradiction.

Finally, the symmetry of 𝑑𝐹 (𝛼, 𝛽) is trivial.

Problem (3.7) suggests two possible approaches for computing the optimal transport
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plan Γ*. The left-hand side is a non-smooth but convex optimization problem, which

can be solved via subgradient methods. Alternatively, the minimax form is a smooth

convex-concave optimization over nonempty, closed and convex sets.2 Therefore, (3.7)

is a convex-concave saddle-point problem [95]. The solutions 𝑧* := (Γ*, 𝜅*) of this

problem, i.e., the saddle points 𝜑 := ⟨·, ·⟩ in 𝒵 := Π(a,b)× ℬ𝐹 , satisfy

𝜑(Γ*, 𝜅) ≤ 𝜑(Γ*, 𝜅*) ≤ 𝜑(Γ, 𝜅*) ∀Γ ∈ Π(a,b), 𝜅 ∈ ℬ𝐹

This formulation gives rise to a primal-dual pair of convex optimization problems:

Opt(𝑃 ) = min
Γ∈Π(a,b)

𝜑(Γ), 𝜑(Γ) := sup
𝜅∈ℬ𝐹

𝜑(Γ, 𝜅) (3.9)

Opt(𝐷) = max
𝜅∈ℬ𝐹

𝜑(𝜅), 𝜑(𝜅) := sup
Γ∈Π(a,b)

𝜑(Γ, 𝜅) (3.10)

If a saddle point (Γ*, 𝜅*) exists, then it is a primal-dual optimal pair and Opt(𝑃 ) =

Opt(𝐷). Hence, the saddle-point gap quantifies the accuracy of a candidate solution

(Γ̂, �̂�):

Δsp = sup
Γ
𝜑(Γ, �̂�)− inf

𝜅
𝜑(Γ̂, 𝜅) = [𝜑(Γ)−Opt(𝑃 )]− [Opt(𝐷)− 𝜑(𝜅)] (3.11)

Since 𝜑 is continuous and convex-concave, and Π(a,b),ℬ𝐹 are convex and bounded, a

solution always exists.

Although more involved than the alternative convex optimization approach, this

saddle-point formulation results in a smooth objective, which allows for the use of

methods with 𝑂(1
𝑡
) convergence rate instead of 𝑂( 1√

𝑡
). This, however, comes at the

price of a higher cost per iteration. We analyze these opposing effects theoretically in

the next section and empirically in Section 3.6. Beyond these computational issues, the

saddle-point formulation provides interesting interpretations of the structured optimal

transport problem through the lens of minimax optimization and its well-known

connections to game theory and robust optimization.

2Π(a,b),ℬ𝐹 , being polytopes, are closed and convex. Note Π(a,b) is always nonempty since
ab⊤ ∈ Π(a,b), and so is ℬ𝐹 [19].
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3.4 Two Interpretations of the Objective

3.4.1 Games over polytopes

Player A

(minimizer)

Player B

(maximizer)

⟨Γ, κ⟩
Payoff

Γ κ

Π(a, b) ℬF

Figure 3-1: Schematic representation of the submodular optimal transport objective
from a game-theoretic perspective.

The minimax formulation (3.7) is a min-max strategy polytope (MSP) game [80]: a

two-player zero-sum game with strategies played over polytopes with payoff function

⟨Γ, 𝜅⟩. In this optimal transport game, Player A (the minimizer) chooses a transport

plan Γ between 𝛼 and 𝛽, and Player B (the adversary) chooses a cost matrix 𝜅 from

the set of admissible costs, i.e., those that lie on the base polytope defined by the

submodular cost function 𝐹 . After this, Player 𝐴 pays ⟨Γ, 𝜅⟩ to Player 𝐵. Since the

game is guaranteed to have a Nash equilibrium, there is a pair of transport plan Γ*

and cost matrix 𝜅* such that Γ* is optimal for fixed cost 𝜅* and vice-versa.

The shape and size of the adversary’s strategy polytope ℬ𝐹 , an 𝑛𝑚−1 dimensional

set in R𝑛×𝑚, depends on the characteristics of 𝐹 . The “more submodular” this function

is—i.e., the earlier and sharper the marginal costs decrease— the larger ℬ𝐹 is. If 𝐹 is

modular, the base polytope collapses to a single point, that is, Player B plays a fixed

strategy: a ground cost matrix C. The problem then reduces to minΓ∈Π(a,b)⟨Γ,C⟩:
the traditional optimal transport problem (2.5).
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3.4.2 Worst-case robust optimization

Problem (3.7) can also be viewed in the light of robust optimization [22, 25], where

uncertain observations are treated in a worst-case scenario. This paradigm is useful

when one is interested in avoiding solutions that are highly sensitive to small pertur-

bations or noise in the problem parameters. Through this lens, our formulation of

structured optimal transport could then be viewed as a transportation problem with

uncertain cost matrix 𝜅, where we aim for a solution that is robust to any fluctuation

of costs within the confidence set ℬ𝐹 . In other words, we seek robustness with respect

to the uncertainty cost set defined by 𝐹 ’s base polytope.

3.5 Optimization

3.5.1 A case for proximal methods

Most popular first-order optimization methods for constrained convex problems fall

into one of two categories: conditional gradient and proximal methods. Methods in

the former class, like the Frank-Wolfe algorithm, require solving linear minimization

oracles (LMO) as a subroutine. In the case of (3.7), this means solving a classic (non-

regularized) optimal transport problem in each iteration, which might be prohibitively

expensive for the applications of interest.

On the other hand, proximal methods require mirror map computations and

projections. The choice of mirror map is crucial for the efficiency of these methods,

and it should take into account the geometry of the constraint set. Only if the resulting

projections can be easily computed are proximal methods an attractive alternative.

As we show below, for appropriately chosen mirror maps this is the case for both

constraint sets in problem (3.7).

Over the next three sections, we adapt three popular proximal methods to our

context. We can solve the left-hand side of Problem (3.7) using the mirror descent

algorithm (MDA). For the minimax formulation, on the other hand, we can use

either saddle-point mirror-descent (SP-MD) or saddle-point mirror-prox (SP-MP) [95,
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96]. As we will see in Section 3.5.6, these two alternative approaches (convex vs.

saddle-point) imply a trade-off between cost-per-iteration and convergence rate. In

a way, these are meta-algorithms that rely on lower-level subroutines that compute

gradients and projections. We discuss these subroutines in detail in Section 3.5.4.

Finally, we put all the pieces together in Section 3.5.6 where we provide pseudo-code

for the algorithms and complexity analysis for each.

3.5.2 Mirror descent

For a closed convex set 𝒳 (the transportation polytope Π(a,b) in our case) and

Lipschitz continuous convex objective 𝑓 (the Lovász extension), the Mirror Descent

Algorithm (MDA) requires the choice of a mirror map ΦΠ(a,b)(Γ). Here, we take this

to be the entropy map, i.e., ΦΠ(a,b)(Γ) , H(Γ). It also requires access to subgradients

of the objective.

The MDA consists of iteratively computing:

a) 𝑤𝑡+1 ∈ 𝐷 such that ∇Φ(𝑤𝑡+1) = ∇Φ(Γ𝑡)− 𝜂𝜅𝑡, for 𝜅𝑡 ∈ 𝜕𝑓(Γ𝑡)

b) Γ𝑡+1 ∈ argminΓ∈𝒳 𝐷Φ(𝑧, 𝑤𝑡+1)

For the choice of entropic mirror map, we have: ∇ΦΠ(a,b)(Γ) = 1+ log Γ (where the

logarithm is to be understood element-wise), so the condition in step (a) becomes:

log𝑤Γ
𝑡+1 = log Γ𝑡 − 𝜂𝜅𝑡 (3.12)

Hence,

𝑤Γ
𝑡+1 = Γ𝑡 ⊙ 𝑒𝜂𝜅𝑡 ,

where the product and exponential are, again, element-wise. Step (b) requires project-

ing 𝑤𝑡+1 into Π(a,b) according to the Bregman divergence associated with the mirror

maps ΦΠ(a,b)(Γ). For the entropy map, this becomes an KL-divergence projection, so

we have

Γ𝑡+1 ∈ argmin
Γ

KL(Γ ‖ Γ𝑡 ⊙ 𝑒𝜂𝜅𝑡) (3.13)
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Therefore, it only remains to discuss how to compute subgradients of the Lovász

extension and how to project (in the KL-sense) onto the transportation polytope,

which we describe in detail in Section 3.5.4.

3.5.3 Saddle-Point mirror descent and mirror-prox

The setting for the Saddle-Point Mirror Descent (SP-MD) and Saddle Point Mirror-

Prox (SP-MP) algorithms is the same, which we now introduce. We consider a joint

variable 𝑧 = (Γ, 𝜅) ∈ 𝒵 := Π(a,b) × ℬ𝐹 and let ΦΠ(a,b)(Γ) and Φℬ𝐹 (𝜅) be mirror

maps on Π(a,b) and ℬ𝐹 , respectively. Then, the mirror map for 𝑧 is defined as

Φ(𝑧)𝒵 = Φ𝒵(Γ, 𝜅) = ΦΠ(a,b)(Γ) + Φℬ𝐹 (𝜅). On the other hand, we assume access to a

first-order oracle to obtain subgradients:

𝜕Φ𝒵(𝑧) = {𝜕Γ[Φ𝒵(Γ, 𝜅)]} × {𝜕𝜅[−Φ𝒵(Γ, 𝜅)]}.

Thus, both the gradient computation and projection decouple over 𝜅 and Γ, and we

can use the projections described in Section 3.5.4. Below, we derive the steps for

SP-MD, the (simpler) SP-MD is analogous with a single Sinkhorn/projection step.

The SP-MD algorithm computes at every step:

a) 𝑤𝑡+1 ∈ 𝐷 such that ∇Φ𝒵(𝑤𝑡+1) = ∇Φ𝒵(𝑧𝑡)− 𝜂𝑔𝑡

b) 𝑧𝑡+1 ∈ argmin𝑧∈𝒵 𝐷Φ(𝑧, 𝑤𝑡+1)

Note that 𝜕Φ𝒵 = (∇ΦΠ(a,b),∇Φℬ), so (a) amounts to finding 𝑤𝑡+1 = (𝑤Γ
𝑡+1, 𝑤

𝜅
𝑡+1) such

that:

∇ΦΠ(a,b)(𝑤
Γ
𝑡+1) = ∇ΦΠ(a,b)(Γ𝑡+1)− 𝜂𝜅𝑡 (3.14)

∇Φℬ(𝑤𝜅
𝑡+1) = ∇Φℬ(𝜅𝑡+1) + 𝜂Γ𝑡 (3.15)

At this point, the updates take different forms depending on the mirror maps.

For our choice of ΦΠ(a,b)(Γ) = 𝐻(Γ), we have ∇ΦΠ(a,b)(Γ) = 1 + log Γ (where the
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logarithm is to be understood element-wise), so (3.14) becomes:

log𝑤Γ
𝑡+1 = log Γ𝑡 − 𝜂𝜅𝑡 (3.16)

Hence,

𝑤Γ
𝑡+1 = Γ𝑡 ⊙ 𝑒𝜂𝜅𝑡 ,

where the product and exponential are, again, element-wise. On the other hand, for

the mirror map Φℬ(𝜅) =
1
2
‖𝜅‖22, Equation (3.15) becomes

𝑤𝜅
𝑡+1 = 𝜅𝑡 + 𝜂Γ𝑡 (3.17)

The second step in SP-MD (step (b) above) requires projecting 𝑤𝑡+1 and thus

(𝑤Γ
𝑡+1, 𝑤

𝜅
𝑡+1) into (Π(a,b),ℬ𝐹 ) according to the Bregman divergences associated with

the mirror maps ΦΠ(a,b)(Γ),Φℬ(𝜅). For the entropy map, this becomes an KL-

divergence projection, so we have

Γ𝑡+1 ∈ argmin
Γ

KL(Γ ‖ Γ𝑡 ⊙ 𝑒𝜂𝜅𝑡). (3.18)

On the other hand, the divergence associated with the ℓ2 norm map is again an ℓ2

distance, so

𝜅𝑡+1 ∈ argmin
𝜅
‖𝜅− 𝜅𝑡 + 𝜂Γ𝑡‖22. (3.19)

3.5.4 Subroutines: projections and subgradients

In this section, we describe in detail the computation of the three main subroutines

used by the top-level optimization algorithms described above: subgradients of the

Lovász extension, projections onto the transportation polytope and projections onto

the submodular base polytope.
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Subgradients of 𝑓

The subdifferential of 𝑓 is

𝜕𝑓(Γ) = argmax
𝜅∈ℬ𝐹

⟨𝜅,Γ⟩.

Thus, a subgradient of 𝑓 is computed by a linear optimization over the base polytope,

which, despite exponentially many constraints, can be solved by a simple sort via

Edmonds’ greedy algorithm in 𝑂(𝑁 log𝑁) time, where 𝑁 = 𝑛×𝑚 is the dimension

of Γ.

Let 𝑓 be the Lovász extension of a submodular function 𝐹 : 2𝑉 → R. Then 𝑓 can

be evaluated at 𝑤 ∈ R𝑛 as follows. Let 𝜎 be a reordering of the elements of 𝑉 such

that 𝑤𝜎1 ≥ 𝑤𝜎2 ≥ · · · ≥ 𝑤𝜎𝑛 , and define 𝑆𝑖 = {𝜎1, . . . , 𝜎𝑖}. Then

𝑓(𝑤) =
𝑛∑︁

𝑖=1

𝑤𝜎𝑖

[︀
𝐹 (𝑆𝑖)− 𝐹 (𝑆𝑖−1)

]︀
The computational cost in this procedure is dominated by the sorting, so it maintains

an 𝑂(𝑁 log𝑁) complexity. Now, recalling that equivalence 𝑓(𝑥) = max𝑦∈ℬ𝐹 ⟨𝑦, 𝑥⟩, we
note that this same procedure yields the maximizing 𝑦, setting 𝑦𝜎𝑖

:= 𝐹 (𝑆𝑖)−𝐹 (𝑆𝑖−1).

It is trivial to verify that indeed 𝑦 is contained in ℬ𝐹 .

Projections on the transportation polytope

If we use (negative) entropy as the mirror map in Π(a,b), i.e., ΦΠ(a,b)(Γ) := 𝐻(Γ) =∑︀
𝑖,𝑗 Γ𝑖𝑗 ln(Γ𝑖𝑗), the projection of a point 𝑤 onto Π(a,b) is given by the KL-divergence:

Γ̂ = argmin
Γ∈Π(a,b)

KL(Γ ‖ 𝑤). (3.20)

In Section 2.4 we discussed how projection onto Π(𝛼, 𝛽) with the KL divergence

corresponds to solving an entropy-regularized optimal transport problem. Therefore,

this can be computed by Sinkhorn-Knopp algorithm. Thus, 𝜀-accurate solution of

equation (3.20) can be computed in 𝑂(𝑁 log𝑁𝜀−3) time [3], but often much faster

empirically [45].
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Projections on the base polytope

If we use Φℬ𝐹 (𝜅) =
1
2
‖𝜅‖2, the resulting Euclidean projection3 on the base polytope,

�̂� = argmin
𝜅∈ℬ𝐹

‖𝜅− 𝑤‖22 = argmin
𝜅′∈ℬ𝐹−𝑤

‖𝜅′‖22 + 𝑤, (3.21)

is equivalent to minimizing the “shifted” submodular function 𝐹 (𝑆)−∑︀𝑖∈𝑆 𝑤𝑖 and

can be computed, for instance, via the Fujishige-Wolfe minimum norm point (MNP)

algorithm [178, 65], via parametric submodular minimization and with recent cutting-

plane algorithms [114]. These generic methods are nevertheless computationally very

expensive, except for small problems.

However, most of the functions of interest, such as the group functions defined

in Section 3.3.1, have additional structure: they are of the form 𝐹 (𝑆) =
∑︀𝑘

𝑖=1 𝐹𝑖(𝑆)

(also called decomposable), each 𝐹𝑖 with small support or “simple” structure. Here,

“simple” means that the minimum norm point problem can be solved fast. For the

functions defined in (3.5), and more generally, for certain hierarchical functions [87,

89], coverage functions [167] and graph cuts on lines (equivalent to Total Variation),

this can be solved in 𝑂(𝑚 log𝑚) time, where 𝑚 is the support size of the respective

𝐹𝑖. We provide an 𝑂(𝑚 log𝑚) algorithm for our cluster functions in the next section.

If the supports of the 𝐹𝑖’s are disjoint, then the base polytope is a product

of polytopes ℬ𝐹𝑖
, and the projection can be computed for each ℬ𝐹𝑖

separately in

parallel. If the supports overlap, then we can still exploit decomposition structure via

randomized coordinate descent [56], operator splitting methods [92, 136] or others

[167] for fast optimization.

3.5.5 Fast projections into submodular base polytopes

The problem of computing the point of minimal norm on the base polytope of a

submodular function is intimately related to that of minimizing the function itself.

3Perhaps surprisingly, the projection onto the base polytope resulting from choosing Φℬ𝐹
(𝜅) :=

𝐻(𝜅) instead is also solved by (3.21) [52], and hence we may implement mirror descent with either
projection.
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The solutions to these two problems are related through the parametric minimization

problem

𝑆*𝜆 = argmin𝐹 (𝑆)− 𝜆|𝑆|.

Let y* be the min-norm point in B𝐹 . We can recover the solution to the original

submodular function minimization (SFM) problem, 𝑆* := 𝑆*𝜆=0 from 𝑦* as 𝑆* =

{𝑖 | 𝑦*𝑖 ≤ 0}. Conversely, we can recover y* from the solutions of the parametric

problem as

y*𝑗 = max{𝜆 | 𝑗 ∈ 𝑆*𝜆}

Thus, given a method for minimizing the function 𝐹 𝜆 := 𝐹 (𝑆)− 𝜆|𝑆|, one can obtain

the min-norm-point by repeated calls to this oracle and a divide-and-conquer strategy

as the one Jegelka et al. [92] use, which runs in 𝑂(𝑛 log 𝑛) time.

Now, in our case, we are dealing with cluster functions of the form 𝐹𝑖(𝑆) =

𝑔(
∑︀

𝑖∈𝑆 𝑤𝑖), and in addition, we are interested in computing projections, rather than

the min-norm-point, i.e., we are interested in �̃� = argmin𝜅∈ℬ𝐹 ‖𝜅 − 𝑚‖22 for some

𝑚 ∈ R𝑛×𝑚. Equivalently, we want to minimize 𝐹𝑤(𝑆) := 𝐹 (𝑆)−𝑀(𝑆), where 𝑀 is

the modular function implied by the vector 𝑚. Thus, the parametric submodular

function minimization (SFM) problem we are dealing with is

𝐹 𝜆
𝑤 = 𝑔(

∑︁
𝑖∈𝑆

𝑤𝑖) +
∑︁
𝑖∈𝑆

𝑚𝑖 − 𝜆|𝑆|

= 𝑔(
∑︁
𝑖∈𝑆

𝑤𝑖) +
∑︁
𝑖∈𝑆

(𝑚𝑖 − 𝜆)

= min
𝛼∈𝐼

𝑐𝛼 + (𝛼
∑︁
𝑖∈𝑆

𝑤𝑖) +
∑︁
𝑖∈𝑆

(𝑚𝑖 − 𝜆)

= min
𝑢∈[0,∑︀𝑖∈𝑉 𝑤𝑖]

𝑔(𝑢) +∇𝑔(𝑢)
(︀∑︁
𝑖∈𝑆

𝑤𝑖 − 𝑢
)︀
+
∑︁
𝑖∈𝑆

(𝑚𝑖 − 𝜆)

where we used the fact that any concave function can be written as the pointwise

supremum of (potentially infinite) linear functions, parametrized by 𝛼, and an interval

𝐼 where the valid gradients lie. Since the minimization is jointly over 𝑆 and 𝛼, we can
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Algorithm 1: Fast SFM for Concave-of-Sum
Input: Submodular set function 𝐹 .
Output: Optimal set 𝑆* = argmin𝐹 (𝑆)

1 for 𝑖 = 1, . . . , 𝑛 do
2 𝑟𝑖 ← −(𝑚𝑖 + 𝜆)/𝑤𝑖

3 𝑉 ← 𝑆𝑜𝑟𝑡(𝑉 ) // By increasing value of 𝑟𝑖

4 for 𝑖 = 1, . . . , 𝑛 do
5 𝑆𝑘 ← {1, . . . , 𝑉 (𝑘)}
6 𝑆* = argmin𝑆𝑖

𝐹 (𝑆𝑖)
7 return 𝑆*

rewrite the problem as

min
𝛼

min
𝑆
𝑐𝛼 + 𝛼

∑︁
𝑖∈𝑆

𝑤𝑖 +
∑︁
𝑖∈𝑆

(𝑚𝑖 − 𝜆) (3.22)

As the slope 𝛼 = ∇𝑔(𝑢) shrinks, the constant 𝑐𝛼 = 𝑔(𝑢)− 𝑢∇𝑔(𝑢) grows. We make

the following observations:

1. Equation (3.22) suggests the following strategy: (1) for each 𝛼, find the mini-

mizing set 𝑆𝛼. (2) Evaluate the function above for each 𝑆𝛼, and pick the one

minimizing 𝐹 (𝑆).

2. For a fixed 𝛼, the optimal 𝑆𝛼 is easy to find:

𝑆𝛼 − {𝑖 | 𝛼𝑤𝑖 +𝑚𝑖 + 𝜆 ≤ 0} = {𝑖 | 𝛼 ≤ −(𝑚𝑖 + 𝜆)/𝑤𝑖

3. Observation 2 shows that the optimal sets as 𝛼 shrinks are nested: once an item

enters the optimal set, it never leaves.

These observations suggest a simple sorting-based algorithm for finding the minimizer

of 𝐹 (𝑆), shown here as Algorithm 1. It runs in time 𝑂(𝑛 log 𝑛+ 𝑛𝑇 ), where 𝑇 is the

evaluation time of 𝐹 and 𝑛 is the size of the ground set of 𝐹 . We emphasize that this

algorithm is only valid for the concave-of-sum functions as defined in Section 3.3.1.
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3.5.6 Putting it all together

Convex formulation

The final version of Mirror Descent that we use to solve the convex (left-hand side) for-

mulation of Problem (3.7) is shown here as Algorithm 2. As discussed in Section 3.5.2,

the choice of entropy mirror map Φ(Γ) = 𝐻(Γ) means that every iteration will require

a KL-projection onto the base polytope and a subgradient computation, bringing the

total cost per iteration to 𝑂(𝑁 log𝑁 +𝑁(log𝑁)𝜀−3). For a non-smooth, not strongly

convex function like the Lovász extension, MDA converges with rate 𝑂( 1√
𝑡
).

Algorithm 2: Mirror Descent (MDA) for Structured Optimal Transport
Input: Initial coupling Γ0.
Parameters : Initial step size 𝜂0.
Output: Optimal transportation coupling Γ*.

1 while Δ > 𝑡𝑜𝑙 do
2 𝑔𝑡 ←Edmonds(𝑓,Γ𝑡)

3 Γ̃𝑡+1 ←Sinkhorn(Γ𝑡 ∘ exp{−𝜂𝑡𝑔𝑡})
4 Γ𝑡+1 ← [

∑︀𝑡+1
𝑠=1 𝜂𝑠]

−1∑︀𝑡+1
𝑠=1 𝜂𝑠Γ̃𝑠

5 Δ← 𝑓(Γ𝑡)− 𝑓(Γ𝑡+1)
6 𝑡← 𝑡+ 1

7 return Γ𝑡

Saddle-point formulation

The final versions of the SP-MD and SP-MP methods used to solve the minimax

formulation of Problem (3.7) are shown here as Algorithm 3 and Algorithm 4, re-

spectively. Compared to MDA and SP-MD, the mirror-prox version enjoys a better

convergence rate of 𝑂(1
𝑡
), at the cost of doubling the per-iteration cost, requiring two

projections onto each of Π(a,b) and ℬ𝐹 . Using the fast projection method for the

cluster-based functions proposed here (Eq. 3.4), the total cost per iteration in either

SP-MD and SP-MP is 𝑂(𝑁(log𝑁)𝜀−3 +𝐾 log𝐾), where 𝐾 is the size of the largest

cluster.
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Algorithm 3: Saddle-Point Mirror Descent for Structured Optimal Transport
Input: Initial variables 𝑧0 = (Γ0, 𝜅0).
Parameters : Initial step size 𝜂0.
Output: Optimal transportation coupling Γ* and cost matrix 𝜅*.

1 while Δ > 𝑡𝑜𝑙 do
2 Γ𝑡+1 ←Sinkhorn(Γ𝑡 ∘ exp{−𝜂𝑡𝜅𝑡})
3 𝜅𝑡+1 ←BasePolyProject(𝜅𝑡 + 𝜂𝑡Γ𝑡)

// Compute saddle point gap of current solution (Eq. (3.11))
4 𝑧𝑡+1 ← [

∑︀𝑡+1
𝑠=1 𝜂𝑠]

−1∑︀𝑡+1
𝑠=1 𝜂𝑠(Γ𝑠, 𝜅𝑠)

5 Δ←SaddleGap(𝑧𝑡)
6 𝑡← 𝑡+ 1

7 return Γ𝑡, 𝜅𝑡

Algorithm 4: Saddle-Point Mirror-Prox for Structured Optimal Transport
Input: Initial variables 𝑧0 = (Γ0, 𝜅0).
Parameters : Initial step size 𝜂0.
Output: Optimal transportation coupling Γ* and cost matrix 𝜅*

1 while Δ > 𝑡𝑜𝑙 do
// Mirror step on true gradient

2 𝑢𝑡+1 ←Sinkhorn(Γ𝑡 ∘ exp{−𝜂𝑡𝜅𝑡})
3 𝑣𝑡+1 ←BasePolyProject(𝜅𝑡 + 𝜂𝑡Γ𝑡)

// Mirror step on proxy gradient
4 Γ𝑡+1 ←Sinkhorn(Γ𝑡 ∘ exp{−𝜂𝑡𝑣𝑡+1)
5 𝜅𝑡+1 ←BasePolyProject(𝑘𝑎𝑝𝑝𝑎𝑡 + 𝜂𝑡𝑢𝑡+1)

// Compute saddle point gap of current solution (Eq. (3.11))
6 𝑧𝑡+1 ← [

∑︀𝑡+1
𝑠=1 𝜂𝑠]

−1∑︀𝑡+1
𝑠=1 𝜂𝑠(Γ𝑠, 𝜅𝑠)

7 Δ←SaddleGap(𝑧𝑡)
8 𝑡← 𝑡+ 1

9 return Γ𝑡, 𝜅𝑡

Initialization

A simple choice to initialize the transportation coupling is via Γ0 = ab⊤. On the other

hand, a random corner in the base polytope can be used to initialize 𝜅0. This can be

computed, for example, by evaluating 𝑓 for a random 𝑤 ∈ R𝑛×𝑚. However, we found

that initializing 𝜅 as the projection of 𝐶 onto ℬ𝐹 often results in faster convergence.
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3.6 Experimental Results

Our implementation of the algorithms proposed in the previous section is done on

Python. We rely on the Python Optimal Transport library [64] for entropic projections

onto the transport polytope. Since we use decomposable submodular cost functions

in all experiments, for the projections onto the base polytope required by SP-MP

(Alg. 4) we rely on the fast projection method described in Algorithm 1, combined

with RCDM [55] when the supports are not disjoint. All experiments were run on a

2.8GHz Intel Core i7 Processor.

3.6.1 Clustered point cloud matching

Synthetic Point Clouds. In our first set of experiments, we seek to understand the

characteristics of the transport plans obtained with our structured optimal transport

(SOT) framework. For this, we generate two point clouds in R2 from two distinct

3-Gaussian mixture distributions (20 points each, 60/20/20% class splits). We use

the class labels to define a sum-of-clusters function as in (3.5), using square-root

thresholding functions (3.6) for varying values of 𝛼. The optimal coupling matrices

are shown in Figure 3-2. As expected, lower values of 𝛼 enforce cluster structure

more aggressively, while for larger 𝛼 the cost effectively becomes modular, causing the

solution to resemble those of the unstructured OT formulations.

EMD Entropy α = 0 α = 0.1 α = 0.3 α = 5

Figure 3-2: Optimal transport plans for clustered point matching obtained with
two structure-agnostic formulations (EMD, entropy-regularized) and our submodular
approach with varying concavity threshold parameter 𝛼 (Eqn. (3.6)). Dashed lines
show class partitions.

In terms of empirical runtimes (Fig. 3-3), SP-MP generally outperforms both

SP-MD and MDA except in the very low sample size regime.
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Figure 3-3: Runtimes for alternative optimization methods for the submodular optimal
transport problem on the synthetic examples.

Source Target EMD Entropy-regularized Submod OT

Source Target EMD Entropy-regularized Submod OT

Figure 3-4: Color transfer with various optimal transport methods. The pixels in the
source image get their color from the transported pixels in the target image.

Color transfer. An interesting application of this matching with group information

is color transfer. Here, we seek to transfer the colors of one image (the target color

scheme) into another one, the source. To do so, we view pixels as points in RGB space,

transport them using optimal transport, and assign their color to the matched pixels.

Here we define partitions through super-pixels obtained by segmentation [61]. The

example in Figure 3-4 shows that including structure in the cost function results in

a coloring scheme that is more uniform that the EMD variant and sharper than the

entropy-regularized one.
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3.6.2 Domain adaptation

Domain adaptation can be naturally cast as a transportation problem. When modeling

the source and target distributions via discrete samples, DOT yields an optimal

transport plan Γ* between the two samples, according to which source points can be

“transported” to the target domain through the barycentric mapping implicitly defined

by Γ* [173, Chapter 7].

In our motivating example of domain adaptation for classification, we wish to

incorporate any available class labels on either domain into the cost function, so

as to encourage points of the same class to be mapped to the same region of the

target space. This is seamlessly attainable with our proposed framework and the

cluster functions defined before (3.5). In the experiments below, we partition the

source samples according to their class label, but we do not use the target labels (i.e.,

every target sample forms its own cluster), so as to simulate the harder—and more

realistic—unsupervised domain adaptation setting.

We test this adaptation approach on the benchmark USPS and MNIST digit

classification datasets. We preprocess the data by normalizing, and downscale MNIST

to the 16× 16 size of USPS. Here, we simulate an extreme adaptation setting where

only 100 samples of each domain are provided, and no target labels are available. We

train a 1-NN classifier on the transported samples and use it to predict labels on the

test set (10K examples for MNIST, ∼2K for USPS).

We compare our method (using (3.5) with (3.6), and a default 𝛼 = 0.2 threshold)

against the two class-regularized OT formulations of Courty et al. [44]: one using an

ℓ𝑝–ℓ1 group-sparsity norm, and the other a Laplacian regularization term. We also

compare against the original and entropy-regularized formulations, neither of which

uses class labels.

Figure 3-5 shows the optimal couplings obtained with the various formulation of

the optimal transport problem. The rows and columns in the couplings are sorted by

the corresponding class label of the samples, so an ideal solution would be as close to

a block-diagonal matrix as possible, which would entail matching digits coherently
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Figure 3-5: Optimal transport plans for the mnist→usps adaptation task. Rows and
columns are sorted by class.

Method MNIST→USPS USPS→MNIST

No adaption 41.20 33.10

EMD 37.72 33.68
Entropy 55.70 43.64
Laplace 54.37 37.73

Group-Lasso 57.12 49.49
Struct-OT 62.97 58.34

Table 3.1: Results on digit recognition adaptation. The number shown correspond to
prediction accuracy (%) on the test set. The “No Adaptation” baseline corresponds to
directly applying the source model to the target domain (without transfer).

to the corresponding class on the other domain. Clearly, the two classic solutions

of the problem, being oblivious of class labels, hardly reflect this structure. On the

other hand, the two regularization schemes of Courty et al. [44] show some subtle

block-diagonal form. However, our submodular formulation yields the clearest block

diagonal structure of all of these.

Moving beyond a merely qualitative analysis of the coupling matrices, the results

in Table 3.1 show that the submodular formulation achieves better accuracy in both

directions of adaptation. We emphasize that the target labels are not used when

defining the groupings of the submodular function, so this block structure is obtained

solely by encouraging source points with the same label to be mapped together.

Example source and transported digits are shown in Figure 3-6.
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Source EMD Entropy Laplacian Group-Lasso Submodular

Figure 3-6: Examples from the mnist→usps domain adaptation task. The first
column is the source image from mnist, and the remaining columns are the result of
transporting the source image into the target domain with the barycentric mapping
defined by the various optimal transport plans.
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3.6.3 Syntax-aware word mover’s distance

The Word Mover’s Distance (WMD) is an application of optimal transport to natural

language processing [106]. It measures dissimilarity between strings (sentences or

documents) by computing the cost of “moving” the words from one to the other, using

a ground metric of distances between vector-space embeddings of words. The WMD,

however, is syntax-agnostic, i.e., it does not take into account word order. That is,

the cost of “moving” a word 𝑢𝑖 in sentence 𝑈 to 𝑣𝑗 in sentence 𝑉 depends only on

their distance in the embedded space, and not on their relative positions in the two

sentences. When using WMD to predict sentence similarity of long sentences with

subclauses, this approach can have obvious drawbacks, like transporting words across

noun-phrase boundaries.

There are obvious limitations to the WMD’s purely semantic bag-of-words approach

to sentence similarity, arising from ignoring the relations among words in a sentence.

For example, consider the following sentences:

a) The hotel does not appear in this book

b) I will book this hotel

c) I will reserve this hotel

The WMD between (a) and (b) will likely be less that than between (b) and (c),

even though the latter two are paraphrases of each other. Although (a) and (b) have

strong single-word semantic overlap, the order in which the words occur in these two

sentences entails different meanings. As contrived as this example might be, it is a

good reminder that syntax and word-meaning go hand-in-hand for assessing semantic

similarity at the sentence level.

We can obtain a syntax-aware alternative to WMD with a simple clustered cost

function as before, where now each 𝑛-gram in a sentence defines a group (i.e., we allow

overlaps between the groups). With this, we are encouraging neighboring words in a

sentence to be matched to neighboring words in the other. Word-to-word costs are

defined as before. We compare this distance against the original WMD in a simple

sentence similarity task: the SICK dataset, consisting of pairs of English sentences
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Figure 3-7: Sentence similarity prediction with two classes of optimal transport
distances over sentences.

labeled with human-generated similarity scores. We randomly select 100 sentences

with at most 10 words from the train and test folds, we compute optimal transport

distances between all training pairs, and then fit a non-parametric regression model to

predict similarity scores from these distances. At test time, given a pair of sentences,

we compute the distance between them and use the regression model to predict

their similarity. The distances, gold similarity scores and fitted models are shown in

Figure 3-7. The WMD model obtains a mean squared error of 0.67 (Spearman’s 𝜌 of

.71), while our proposed syntax-aware version has a much better correlation with gold

similarity scores (MSE=0.59, 𝜌 = .75).

3.6.4 Further illustrative examples
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Figure 3-8: Comparison of optimal transportation couplings between two 1-dimensional
multimodal densities obtained by various flavors of the Optimal Transport objective.
The submodular objective leads to mode preservation.
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Besides the settings presented in this work where structure arises from group labels,

the framework proposed here allows us to explicitly encourage certain topological

aspects of the distributions to be preserved. One such possible constraint for discrete

distributions that lie on a low-dimensional manifold is to encourage neighboring points

to be matched together. Such type of constraints can substantially alter the resulting

transport plans, as shown in Figure 3-9 for a simple two-moons dataset. Here, the

SOT solution favors neighborhood preservation over element-wise cost, resulting in a

block-structured optimal coupling. On the other hand, the constraints can arise from

the topology of the distribution itself, e.g., by encouraging modes of a distribution to

be mapped together and thus inheriting this multi-modality in the coupling density

(Figure 3-8).
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Figure 3-9: Optimal transport plans and matchings for classic and submodular versions
of OT on a toy two-moons dataset.
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3.7 Discussion and Extensions

In this chapter, we proposed a generic framework for including structural information

into optimal transport problems, which are finding a growing range of applications in

machine learning. While we demonstrated the utility of the framework via examples in

domain adaptation, color transfer, and sentence similarity, our framework can encode

a variety of structures beyond these settings, since it allows arbitrary submodular

functions. This choice will depend on the specifics of the problem and the efficiency

with which the projections can be solved. The overall resulting convex optimization

problem is efficiently solvable via mirror descent methods. For very large problems or

general submodular functions, approximate or stochastic submodular optimization

subroutines (if applicable) may be suitable.

In fact, the flexibility of our framework goes beyond submodularity; any convex

function with bounded closed gradient maps would work as 𝑓 . Here, we explicitly

chose submodular functions due to their favorable geometry and resulting tractability,

and their ability to encode a wide range of combinatorial structures.
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Chapter 4

Optimal Transport with

Global Invariances

This chapter is partially based on Alvarez-Melis and Jaakkola [4] and Alvarez-Melis,

Jegelka, and Jaakkola [10], with substantial extensions and various new methods

proposed.

A key limitation of classic optimal transport is that it implicitly assumes that the

two sets of objects in question are represented in the same space, or at least that

meaningful pairwise distances between them can be computed. This is not always

the case, especially when the objects are represented by learned feature vectors. For

example, word embedding algorithms operate at the level of inner products or distances

between word vectors, so the representations they produce can be arbitrarily rotated,

sometimes even for different runs of the same algorithm on the same data. Such

global degrees of freedom in the vector representations render direct pairwise distances

between objects across the sets meaningless. Indeed, OT focuses on minimizing

individual movement of mass, oblivious to global transformations. As a concrete

example, consider two identical sets of points where one set is subjected to a global

rotation. The optimal transport coupling evaluated between the resulting sets may no

longer recover the correct correspondences.

When the global transformation is known or can be easily estimated, it can be

incorporated in the computation of pairwise distances, thereby enabling the use
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of traditional OT. Unfortunately, only the type of underlying transformation (e.g.,

rotation) is typically known, not the actual realization. In such cases, we would like the

optimal transport problem to also find the best latent transformation along with the

optimal coupling. In other words, we seek a formulation of OT that remains invariant

under global transformations. In this chapter, we introduce such a formulation.

Simultaneous learning of transformations and matchings is a problem the arises

in many settings, and for which many tailored solutions have been proposed. We

review some of these related approaches in Section 4.2. In contrast to many of these,

here we seek a general formulation that combines the power and theoretical footing

of optimal transport with a flexible framework to learn cross-space transformations.

The resulting problem, which can be understood as enforcing invariance to certain

transformations in the OT cost objective, is general enough to subsume various related

application-tailored approaches, but sufficiently confined so as to allow for tractable

optimization and practical implementation. In particular, we show that modeling

invariances through linear operators of bounded Schatten norm leads to a problem that

can be solved very efficiently, and which simplifies even further under mild conditions

often satisfied in the applications of interest.

The rest of this chapter is structured as follows. As a preamble, in Section 4.1

we discuss applications which motivate the framework of optimal transport with

invariances, and in Section 4.3 we introduce two concepts which will play a prominent

role throughout this chapter: the orthogonal Procrustes problem, and classic approach

for finding correspondences across pair data from different domains; and the Gromov-

Wasserstein distance, a recent generalization of the optimal transport problem for the

case of incomparable domains.

The main content of this chapter starts in Section 4.4, where we discuss why

classic OT is not applicable for unsupervised matching in many settings—including

the motivating applications described in Section 4.1—and subsequently introduce the

generalization of the problem which accounts for this. Upon defining the problem, we

observe that it can be expressed in three equivalent forms, each one leading to a different

family of optimization approaches. We then introduce the use of Schatten-norms to
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define invariance classes, the last step for instantiating the proposed framework. After

this, we turn to optimization. A technical section (which can be safely skipped unless

the reader has interest in the details related to the implementation of the optimization

methods) describes the building blocks—gradient and projection computation—of

these general approaches (§4.6.1), after which we describe three main families of

optimization approaches: alternating-minimization (§4.6.2), joint gradient descent

(§4.6.3) and single-block gradient descent (§4.6.4). In Section 4.7 we take a step

back and propose an alternative approach that can be applied in similar settings (for

matching across unregistered spaces) based on the Gromov-Wasserstein distance.

The final part of this chapter presents an empirical evaluation of the proposed

framework. We first compare the various approaches to solving the problem proposed

here in a controlled setting (§4.8.2). For the rest of the experimental section, we

focus on the two methods that yielded better performance in the initial simple tasks:

invariant OT via alternating minimization and the Gromov-Wasserstein approach.

We then test these methods in the problem of unsupervised word translation, showing

that they perform on par with state-of-the-art, at a fraction of the computational

cost. We end this chapter with a high-level discussion of practical considerations to

choose between the Gromov-Wasserstein and invariant optimal transport approaches

to unsupervised embedding alignment (§4.9).

4.1 Motivation and Applications

Finding correspondences across collections of objects represented in a fully unsupervised

manner is a challenging problem that arises in many applications within machine

learning. These are often used as a preliminary step in a multi-step pipeline, such as

domain adaptation or transfer learning.

Cross-domain alignment is of particular importance in natural language processing.

Indeed, many key linguistic tasks, within and across languages or domains, including

machine translation, rely on learning cross-lingual correspondences between words or

other semantic units. While the associated alignment problem could be solved with
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access to large amounts of parallel data, broader applicability relies on the ability

to do so with largely monolingual data, from Part-of-Speech (POS) tagging [184],

dependency parsing [79], to machine translation [109]. The key subtask of bilingual

lexical induction, for example, while long-standing as a problem [66, 147, 146], has

been actively pursued recently [17, 182, 42].

Current methods for learning cross-domain correspondences at the word level rely

on distributed representations of words, building on the observation that monolingual

word embeddings exhibit similar geometric properties across languages Mikolov et al.

[127]. While most early works assumed some, albeit minimal, amount of parallel data

[127, 51, 184], recently fully-unsupervised methods have been shown to perform on par

with their supervised counterparts [42, 15]. While successful, the mappings arise from

multiple steps of processing, requiring either careful initial guesses or post-mapping

refinements, including mitigating the effect of frequent words on neighborhoods. The

associated adversarial training schemes can also be challenging to tune properly [15].

The main challenge for finding correspondences across word embedding spaces is

the fact that these are not globally registered, i.e., there is no guarantee that their

overall orientation is the same. As a concrete example, the vectors for father and

padre might play a similar role with respect to other vectors in their corresponding

collections, but could be pointing in different directions if one of the spaces is rotated

with respect to the other. Indeed, word embeddings are estimated primarily in a

relational manner (i.e., with distance-based optimization objectives) to the extent

that the algorithms are naturally interpreted as metric recovery methods [84]. As a

consequence, previous work has sought to correct this lack of registration by finding

an orthogonal mapping that best aligns the spaces, but has traditionally assumed

access to prior correspondences—seed translations— to do so Mikolov et al. [127] and

Zhang et al. [184]. The success of these approaches provides strong evidence that

orthogonality is the right notion of invariance across word embedding spaces, and has

prompted many recent attempts to learn such a transformation even without access

to seed translations [183, 42, 15]. We discuss many such methods in the next section.
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4.2 Related Work

The general problem of unsupervised estimation of correspondence between sets

of features is well-studied and arises in various fields under different names, such

as manifold alignment [175], feature set matching [75] and feature correspondence

finding [171]. While a –very long– thesis could be written just on reviewing all

such methods, here we focus the discussion on related methods that combine soft

correspondences (such as those produced by OT) with explicit space alignment. The

only exception to this scope, which we mention due to its historical importance and

connection to some of the methods proposed here, is the iterative closest point (ICP)

algorithm [40, 26] (and its generalizations, e.g. [151]). ICP is a classic method to align

point clouds in low-dimensions (usually 2D or 3D), which alternates between finding

(hard) correspondences through nearest-neighbor pairing and finding the best rigid

transformation based on those correspondences (i.e., solving an Orthogonal Procrustes

problem). While practical, this method is limited by the fact that it computes strict

assignments between points, which often leads to poor local solutions.

Perhaps the earliest approach which combines soft-matches with explicit space

alignment is by Rangarajan et al. [145], who derive a framework to establish corre-

spondences between shapes that rejects non-homologies (e.g., rotations) based on an

entropy-regularized version of the OT problem. The resulting Softassign Procrustes

Algorithm proceeds iteratively by alternating between estimating optimal rotations

and performing Sinkhorn iterations. This approach, however, only considers rotations,

and is tailored to 2D data, where rotations can be easily parametrized. Compared to

methods that directly solve a Procrustes problem from a few known correspondences

[184, 16] or by generating pseudo-matches through an initial unsupervised step [42,

15], optimal transport allows for more flexible correspondence estimation.

More recently, Zhang et al. [183] propose combining OT with Procrustes align-

ment to find correspondences between word embedding spaces. They initialize their

orthogonal mapping using an adversarial training phase, much like Conneau et al. [42],

and solve the optimization problem with alternating minimization. Our approach, on
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the other hand, does not rely on neural network initialization, instead leveraging a

convexity annealing scheme that leads to smooth convergence, with little sensitivity to

initialization. A different line of work has investigated from a theoretical perspective

the intersection of Procrustes alignment and Wasserstein means of distributions [180].

Concurrently with the work of the author of this thesis on this topic [10], Grave

et al. [76] tackle the word embedding alignment task with an approach similar to

that of Zhang et al. [183], combining Wasserstein distances (an instance of OT) and

Procrustes alignment. Their approach differs from Zhang et al. [183] in how they

scale up optimization, by relying on a stochastic Sinkhorn solver [71], and in how they

initialize it, by solving a convex relaxation of the original problem.1

Although driven by a similar motivation (word embedding alignment) and relying

on similar principles (joint optimization of transport coupling and feature mapping)

as the work of Zhang et al. [183] and Grave et al. [76], our approach differs from

them in several aspects. First, it allows for more general types of invariance classes

(characterized as Schatten ℓ𝑝-norm balls), subsuming orthogonal invariance considered

in prior work as a special case. Second, we dispense with the need for any ad-hoc

initialization by introducing instead a convexity-annealing approach to optimization.

Third, our approach remains robust to the choice of entropy regularization parameter.

A different generalization of the OT problem aimed at overcoming lack of intrinsic

correspondence between spaces is the Gromov-Wasserstein (GW) distance [125]. It has

been recently applied to various correspondence problems, including shape interpolation

[163, 140] and unsupervised word translation [4]. While our framework recovers this

distance in certain scenarios (see §4.5.3), it is best understood as a compromise between

the classic formulation of OT that requires the spaces to be fully registered, and the

GW distance, which completely forgoes explicit computation of distances across spaces,

relying instead on comparison of intra-space similarities. Thus, our approach is best

suited to tasks where distances across spaces can be computed, but are meaningful

only if made invariant to some latent transformation. A further difference with the

1Interestingly, this relaxation corresponds to a hybrid of two instances of our framework: optimizing
a Frobenius-norm objective (§4.5.3) over orthogonal matrices (§4.5.1).
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usual OT and GW distances is that our approach produces, as an intrinsic part of

optimization, a global mapping that can be used to map out-of-sample points across

spaces.

It is worth noting that the problem of unsupervised word translation has a long

history—under the name bilingual lexical induction—in the computational linguistics

literature, going back to Rapp [147] and Fung [66]. The literature on this topic is

extensive, and we refer the reader to one of the many existing surveys for a broader

panorama [172, 149]. In our discussion above, we have already mentioned above

various fully unsupervised methods for this task based on word embeddings [183, 76,

42]. In addition, there exists many minimally-supervised approaches that assume some

coarse or limited parallel data. Most of these fall in one of two categories: methods

that learn a mapping from one space to the other, e.g., as a least-squares objective

(e.g., [127]) or via orthogonal transformations Zhang et al. [184], Smith et al. [161],

and Artetxe et al. [17], and methods that find a common space on which to project

both sets of embeddings [59, 121].

4.3 Preliminaries

4.3.1 Supervised alignment and the Procrustes problem

Space alignment from paired samples is a classical problem in statistics and linear

algebra. In this problem, we assume we are given two sets of paired examples,

𝑋 = {x(𝑖)}𝑛𝑖=1 and 𝑌 = {y(𝑗)}𝑛𝑗=1, drawn from potentially distinct feature spaces

𝒳 ⊂ R𝑑𝑥 and 𝒴 ⊂ R𝑑𝑦 . Here paired means that the elements across the two samples

are known to be in correspondence, i.e., x(𝑖) corresponds to y(𝑖) and so forth. The

problem of finding the best mapping 𝑇 that maps the target samples to the source

ones can be cast as

min
𝑇∈ℱ
‖X− 𝑇 (Y)‖2

where ℱ is some class of functions and ‖ · ‖ is typically taken to be the Frobenius norm

‖A‖𝐹 =
√︁∑︀

𝑖,𝑗 |𝑎𝑖𝑗|2. Naturally, the choice of space ℱ will determine the difficulty of
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finding 𝑇 as well as the quality of the alignment implied by it.

The classic Orthogonal Procrustes problem restricts ℱ to be rigid (rotation and

reflection) transformations –i.e., orthogonal matrices:

min
P∈O(𝑛)

‖X−PY‖2𝐹 . (4.1)

Despite its simplicity, Procrustes analysis is a powerful tool used in various applica-

tions, from statistical shape analysis [73] to market research and others [74]. Its main

advantage is that it has a closed-form solution in terms of a singular value decom-

position (SVD) [156]. Namely, given an SVD, say UΣV⊤, of XY⊤, the orthogonal

matrix minimizing problem (4.1) is P* = UV⊤, which is a direct consequence of a

well-known approximation property of the SVD:

Lemma 4.3.1. If A ∈ R𝑛×𝑚 and A = UΣV⊤ is an SVD of A, then the solution of

the Orthogonal Procrustes is given by: argmaxP∈O(𝑛)⟨P,A⟩ = UV⊤.

Proof. This is a particular case of the more general Lemma 4.5.2, which is proven in

Section 4.5.

We emphasize that the Procrustes problem (4.1) crucially requires the columns of X

and Y be paired, making it an intrinsically supervised approach. Thus, its application

to the problem of feature alignment requires either an—ideally small— initial set of

true paired examples or a method to generate them.

Besides obvious computational advantage, constraining the mapping between

spaces to be orthonormal is justified in the context of word embedding alignment

because orthogonal maps preserve angles (and thus distances), which is often the only

information used by downstream tasks (e.g., for nearest neighbor search) that rely on

word embeddings. [161] further show that orthogonality is required for self-consistency

of linear transformations between vector spaces.

Clearly, the Procrustes approach only solves the supervised version of the problem

as it requires a known correspondence between the columns of X and Y. Steps beyond

this constraint include using small amounts of parallel data [184] or an unsupervised

technique as the initial step to generate pseudo-parallel data [42] before solving for P.
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4.3.2 The Gromov-Wasserstein distance

The classic optimal transport requires a distance between vectors across the two

domains where the measures are defined. As mentioned in the introduction to this

chapter, such a metric may not be available, for example, when the sample sets

to be matched do not belong to the same metric space (e.g., different dimensions).

The Gromov-Wasserstein distance [125] generalizes optimal transport by comparing

the metric spaces directly instead of samples across the spaces. In other words, this

framework operates on distances between pairs of points calculated within each domain

and measures how these distances compare to those in the other domain. Thus, it

requires a weaker—but easy to define—notion of distance between distances, and

operates on pairs of points, turning the problem from a linear to a quadratic one.

Formally, in its discrete version, the problem considers two measure spaces expressed

in terms of within-domain similarity matrices (C, a) and (C′,b) and a loss function

defined between similarity pairs: 𝐿 : R × R → R, where 𝐿(C𝑖𝑘,C
′
𝑗𝑙) measures the

discrepancy between the distances 𝑑(x(𝑖),x(𝑘)) and 𝑑′(y(𝑗),y(𝑙)). Typical choices for 𝐿

are 𝐿(𝑎, 𝑏) = 1
2
(𝑎− 𝑏)2 or 𝐿(𝑎, 𝑏) = KL(𝑎 ‖ 𝑏). In the view of optimal transport theory,

𝐿(C𝑖𝑘,C
′
𝑗𝑙) can also be understood as the cost of transporting one unit of mass 𝑖 to 𝑗

and a unit from 𝑘 to 𝑙.

All the relevant values of 𝐿(·, ·) can be put in a 4-th order tensor L ∈ R𝑁1×𝑁1×𝑁2×𝑁2 ,

where L𝑖𝑗𝑘𝑙 = 𝐿(C𝑖𝑘,C
′
𝑗𝑙). As before, we seek a coupling Γ specifying how much mass

to transfer between each pair of points from the two spaces. The Gromov-Wasserstein

problem is then defined as solving

GW(C,C′, a,b) = min
Γ∈Π(a,b)

∑︁
𝑖,𝑗,𝑘,𝑙

L𝑖𝑗𝑘𝑙Γ𝑖𝑗Γ𝑘𝑙 (4.2)

It can be analogously defined for continuous measures 𝛼, 𝛽 on metric spaces (𝒳 , 𝑑𝒳 )
and (𝒴 , 𝑑𝒴): Its continuous version is analogous:

GW(𝑑𝒳 , 𝑑𝒴 , 𝛼, 𝛽) = min
Γ∈Π(𝛼,𝛽)

∫︁
𝒳×𝒴×𝒳×𝒴

𝐿(𝑑𝒳 (𝑥, 𝑥
′), 𝑑𝒳 (𝑦, 𝑦

′))𝑑𝛾(𝑥, 𝑦)𝑑𝛾(𝑥′, 𝑦′) (4.3)
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This notion of discrepancy between metric spaces possesses various desirable

theoretical properties, including the fact that for a suitable choice of the loss function

it is indeed a distance:

Theorem 4.3.2 (Mémoli [125]). With the choice 𝐿 = 𝐿2, GW
1
2 is a distance on the

space of metric measure spaces.

Proof. We refer the reader to [125] for a complete proof.

Compared to the classic optimal transport problem (2.5), this version is substan-

tially harder since the objective is now not only non-linear, but non-convex too.2 In

addition, it requires operating on a fourth-order tensor, which would be prohibitive in

most settings.

Surprisingly, this problem can be optimized efficiently with first-order methods,

whereby each iteration involves solving a traditional optimal transport problem [163,

140]. Furthermore, if the loss function can be written as 𝐿(𝑎, 𝑏) = 𝑓1(𝑎) + 𝑓2(𝑏) −
ℎ1(𝑎)ℎ2(𝑏), which is the case of most common choices of 𝐿 including 𝐿 = 𝐿2, Solomon

et al. [163] show that instead of the 𝑂(𝑁2
1𝑁

2
2 ) complexity implied by naive fourth-order

tensor product, this computation reduces to 𝑂(𝑁2
1𝑁2 +𝑁1𝑁2

2 ) cost. Their approach

consists of solving Problem (2.5) by projected gradient descent, which yields iterations

that involve projecting onto Π(a,b) a pseudo-cost matrix of the form

ĈΓ(C,C
′,Γ) = C𝑥𝑦 − ℎ1(C)Γℎ2(C

′)⊤ (4.4)

where

C𝑥𝑦 = 𝑓1(C)a1⊤𝑚 + 1𝑛b
⊤𝑓2(C

′)⊤

We provide an explicit algorithm for the case 𝐿 = 𝐿2 in Section 4.6.

2In fact, the discrete (Monge-type) formulation of the problem is essentially an instance of the
well-known (and NP-hard) quadratic assignment problem (QAP).
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4.4 Unsupervised Matching with Optimal Transport

Besides providing a principled geometric approach to compare distributions, optimal

transport has the advantage of producing, as an intrinsic part of its computation, a

realization of the optimal way to match distributions. Indeed, any feasible coupling

𝛾 ∈ Π(𝛼, 𝛽) in Problem (2.7) (or in Problems (2.5) or (2.11) analogously) can be

interpreted as a “soft” or “multivalued” matching between 𝛼 and 𝛽. Therefore, the

optimal 𝛾* corresponds to the minimum-cost way to match them. In the case where

the distributions are discrete (e.g., point clouds) 𝛾* is a matrix of soft correspondences

between them. This (producing a soft-matching as intrinsic part of its computation) is

one of the most appealing practical characteristics of optimal transport, and the main

reason it has found successful application to a myriad of problems that involve finding

correspondences or matches, such as image matching [185, 176], shape interpolation

[162], shape registration [108], domain adaptation [44] and music transcription [63].

It is tempting to directly apply OT to the problem of unsupervised embedding

alignment. Indeed, the OT toolbox does exactly what we seek intuitively: finding

cost-optimal correspondences between two collections (or distributions) based on their

geometry (i.e., via the metric) of the underlying space. But note that throughout

our discussion of optimal transport in Chapter 2, we made the implicit—yet crucial—

assumption that either the two distributions are defined in the same space 𝒳 , or if
they are not, that a cost function between their respective spaces 𝒳 and 𝒴 be specified.

When the embedding spaces are estimated in a data-driven way, as is usually the

case in machine learning, even if these spaces are compatible (e.g., have the same

dimensionality) there is no guarantee that the usual metric 𝑑(𝑥, 𝑦) is meaningful. This

could be, for example, because the spaces are defined up to rotations and reflections,

creating a class of invariants that the ground metric does not take into account. A

natural approach to deal with this lack of registration between the two spaces is to

simultaneously find a global transformation that corrects for this and an optimal

coupling that minimizes the transportation cost between the distributions.

Formally, consider two collections {x(𝑖)}𝑛𝑖=1 and {y(𝑗)}𝑚𝑗=1 and their associated
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discrete probability measures 𝛼, 𝛽. In addition, consider a function class ℱ : 𝒴 → 𝒴
that defines the type of invariances present in the data.3 Naturally, the choice of

class ℱ should be informed by the application domain, and we will discuss many

such choices throughout this chapter. With this setting, in addition to the optimal

coupling between the two measures (i.e., local or point-wise correspondence) we also

seek among all transformations in ℱ that which best aligns the two spaces (i.e, global

or space-wise correspondence). In the language of optimal transport, this problem

can be succinctly written as:

OT𝑐�ℱ(a,b) , min
Γ∈Π(a,b)

𝑓∈ℱ

⟨Γ,C(X, 𝑓(Y))⟩. (4.5)

where 𝑓(Y) is a matrix formed by the columns 𝑓(y(𝑖)), and as before C is the matrix of

pair-wise costs, i.e. [C(X, 𝑓(Y))]𝑖𝑗 = 𝑐(x(𝑖), 𝑓(y(𝑗))), but now we make the dependence

on X and Y explicit. Naturally, just as we saw in the case of the original formulation

of OT in Section 2.3, this objective can formulated for distributions too

OT𝑐�ℱ(𝛼, 𝛽) , min
𝛾∈Π(𝛼,𝛽)

𝑓∈ℱ

∫︁
𝒳×𝒴

𝑐(𝑥, 𝑓(𝑦))𝑑𝛾(𝑥, 𝑓(𝑦)) (4.6)

As before, we can additionally define entropy-regularized versions of these problems

too, which we denote by OT𝜀
𝑐�ℱ(a,b) and OT𝜀

𝑐�ℱ(𝛼, 𝛽). We refer to all of these

collectively as the invariant optimal transport problem.

Variations of this problem for particular cases of 𝒳 , 𝑑(·, ·) and ℱ have been

proposed in various contexts, particularly for image registration (e.g., [145, 41]),

and more recently, for word embedding alignment [183, 76]. Virtually all these

approaches instantiate ℱ as the class of orthogonal transformations O(𝑑). In such

cases, minimization with respect to 𝑓 is easy to compute, as it corresponds to an

Orthogonal Procrustes problem, which has a closed-form solution [74]. In such cases,

solving Problem (4.5) by alternating minimization is a sensible choice.

3Throughout this chapter, we assume the transformation 𝑓 is applied to the target space. Naturally,
this could be formulated for 𝒳 instead, or—with some additional generalization—on both spaces
simultaneously.
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To simplify the notation in our derivation of methods below, we introduce the

short-hand notation 𝒯𝑐(𝑓, 𝛾;𝛼, 𝛽) to denote the total transportation cost between 𝛼

and 𝛽 (after mapping by 𝑓) incurred by coupling 𝛾, i.e.,

𝒯𝑐(𝑓, 𝛾;𝛼, 𝛽) ,
∫︁
𝒳×𝒴

𝑐(𝑥, 𝑓(𝑦))𝑑𝛾(𝑥, 𝑓(𝑦)) (4.7)

so that, for example, OT𝑐(𝛼, 𝛽) = min𝛾∈Π(𝛼,𝛽) 𝒯 (Id, 𝛾;𝛼, 𝛽), and more generally,

OT𝑐(𝛼, 𝑓♯𝛽) = min𝛾∈Π(𝛼,𝛽) 𝒯 (𝑓, 𝛾;𝛼, 𝛽). In addition, we define analogously as before

an ℱ -invariant version of this cost:

𝒯𝑐�ℱ(𝛾;𝛼, 𝛽) , min
𝑓∈ℱ

∫︁
𝒳×𝒴

𝑐(𝑥, 𝑓(𝑦))𝑑𝛾(𝑥, 𝑓(𝑦)). (4.8)

With this notation in hand, we observe that Problem (4.6) can be expressed in

three equivalent forms depending on the order of optimization:

min
𝛾∈Π(𝛼,𝛽)

𝑓∈ℱ

[︂ ∫︁
𝒳×𝒴

𝑐(𝑥, 𝑓(𝑦))𝑑𝛾(𝑥, 𝑓(𝑦))

]︂
= min

𝛾∈Π(𝛼,𝛽)
𝑓∈ℱ

𝒯𝑐(𝑓, 𝛾;𝛼, 𝛽) (4.9)

min
𝛾∈Π(𝛼,𝛽)

[︂
min
𝑓∈ℱ

∫︁
𝒳×𝒴

𝑐(𝑥, 𝑓(𝑦))𝑑𝛾(𝑥, 𝑓(𝑦))

]︂
= min

𝛾∈Π(𝛼,𝛽)
𝒯𝑐�ℱ(𝛾;𝛼, 𝛽) (4.10)

min
𝑓∈ℱ

[︂
min

𝛾∈Π(𝛼,𝛽)

∫︁
𝒳×𝒴

𝑐(𝑥, 𝑓(𝑦))𝑑𝛾(𝑥, 𝑓(𝑦))

]︂
= min

𝑓∈ℱ
OT𝑐(𝛼, 𝑓♯𝛽) (4.11)

Naturally, we can define entropy-regularized versions of any of these objectives by

adding the term −𝜀H(Γ) (as before, we use superscript 𝜀 to denote those). Over the

next sections, we will discuss approaches to solve these three versions of the problem.

A note on regularity. Whenever OT is used with the goal of matching (i.e., not

just comparison), guarantees on the solution of the problem are important. A full

exposition on such guarantees falls beyond our scope here, so we refer the interested

reader to a survey on this [13]. However, from our brief discussion in Section 2.6.1, we

recall that for the quadratic cost, the optimal coupling 𝛾* is guaranteed to exist, be

unique, and correspond to a deterministic map (i.e., a “hard” matching).4

4Note that 𝛾(𝛼, 𝛽) “includes” all maps 𝑇 : 𝒳 → 𝒳 , which can be expressed as 𝛾(·, ·) = (𝐼𝑑×𝑇 )♯𝛼.
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4.5 Modeling Invariances with Schatten Norms

In this section, we propose a class of transformations that leads to a simple but

effective formulation of the invariant OT problem. The class of invariances is defined

by linear operators with bounded norm:

ℱ𝑝 , {P ∈ R𝑑×𝑑 | ‖P‖𝑝 ≤ 𝑘𝑝}, (4.12)

where ‖ · ‖𝑝 is the Schatten ℓ𝑝-norm, that is, ‖P‖𝑝 = ‖𝜎(P)‖𝑝 where 𝜎(P) is a vector

containing the singular values of P. In addition, 𝑘𝑝 is a norm- and problem-dependent

constant.5

This choice of invariance sets follows both modeling and computational motivations.

As for the former, Schatten norms allow for immediate interpretation of the elements

of ℱ𝑝 in terms of their spectral properties (Fig. 4-1). For example, choosing 𝑝 = 1

encourages solutions with sparse spectra (e.g., projections, useful when the support of

one of the two distributions is known to be contained in a lower-dimensional subspace),

while 𝑝 =∞ instead seeks solutions with uniform spectra (e.g., unitary matrices, thus

enforcing invariance to rigid transformations). Intermediate values of 𝑝 interpolate

between these two extremes. Interestingly, the choice 𝑝 = 2 recovers a recent popular

generalization of the optimal transport problem motivated by a similar goal: the

Gromov-Wasserstein distance [125], as we show in Section 4.5.3. Thus, the proposed

Schatten invariance framework offers significant flexibility. In terms of computation,

Schatten norms exhibit various desirable properties, such as unitary invariance, sub-

multiplicativity, and easy characterization via duality, all of which play an important

role in deriving efficient optimization algorithms below.

Here, we formulate the problem for the case where the ground metric 𝑐 is the

squared euclidean distance, i.e, 𝑐(x,y) = ‖x−y‖22, which is arguably the most common

choice in practice. With this choice of ground metric, Lemma 4.6.2 shows that for

5In the most common case, 𝑘𝑝 would be chosen to ensure the identity mapping is contained in
this set.

86



Figure 4-1: Schatten-norm invariance classes. The depicted ℓ𝑝-norm balls in
singular value space correspond to matrix invariance classes ℱ𝑝. The radius is chosen
so as to include the identity matrix (𝜎 = [1, 1]). For linear objectives, solutions when
optimizing over ℱ∞ and ℱ1 can be found on the extreme points of their respective
constraint spaces: orthogonal matrices for the former and rank-one matrices for the
latter.

linear transformations, we can express the transportation cost objective as

𝒯𝑐(𝑓,Γ; a,b) = −2⟨Γ,X⊤PY⟩+ ⟨x‖‖, a⟩+ ⟨Py‖‖,b⟩,

where we remind the reader that x‖‖ is the vector with row-wise norms of X, i.e.,

x‖‖ = (‖x(1)‖2, . . . , ‖x(𝑛)‖2), and analogously for Py‖‖. Thus, we can equivalently

solve the maximization problem

max
Γ∈Π(a,b)

max
P∈ℱ

2⟨Γ,X⊤PY⟩ − ⟨x‖‖, a⟩ − ⟨Py‖‖,b⟩. (4.13)

This objective has a clear interpretation. The first term, which can be equivalently

written as ⟨XΓ,PY⟩, measures agreement between XΓ, the source points mapped

according to the barycentric mapping implied by Γ, and PY, the target points

mapped according to P. The other two terms, which can be interpreted as empirical

expectations Êx∼𝛼‖x‖22 and Êy∼𝛽‖Py‖22, act as a counterbalance, normalizing the
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objective and preventing artificial maximization of the similarity term by arbitrary

scaling of the mapped vectors.

In general, Problem (4.13) is not jointly concave on P and Γ, but it is concave in

either variable if the other one is fixed. This suggests an alternating maximization

approach on P and Γ. Since only the first term depends on Γ, solving for this variable

for a fixed P is a usual OT problem, for which we discuss optimization in Section 4.6.2.

On the other hand, for a fixed Γ the problem is a concave maximization over a compact

and convex set, which can be solved efficiently with Frank-Wolfe-type algorithms since

projecting onto Schatten norm balls is tractable [90].

While the approach we have just described provides a tractable way to solve

problem (4.13) in general, we show that under conditions that often hold practice,

optimization is much simpler. This simplification relies on eliminating the dependence

on P of the third term in problem (4.13):

Lemma 4.5.1. Under either of the conditions

1. ∀P ∈ ℱ , P is angle-preserving (i.e., ∀x,y ⟨Px,Py⟩ = ⟨x,y⟩), or

2. ∃𝑘 ≥ 0 : ‖P‖𝐹 = 𝑘 ∀P ∈ ℱ and Y is 𝛽-whitened (i.e., Y[[b]]Y⊤ = I𝑑)

Problem (4.13) is equivalent to

max
Γ∈Π(a,b)

max
P∈ℱ
⟨XΓY⊤,P⟩. (4.14)

Proof. Suppose (1) holds, i.e., ⟨Px,Py⟩ = ⟨x,y⟩ for every x,y ∈ R𝑑. Then, in

particular ‖Py‖2 = ‖y‖2 for every y(𝑗), and therefore:

⟨Py‖‖,b⟩ =
𝑚∑︁
𝑗=1

b𝑗‖Py(𝑗)‖2 =
𝑚∑︁
𝑗=1

b𝑗‖y(𝑗)‖2

and therefore only the first term in (4.13) depends on P or Γ, from which the

conclusion follows. On the other hand, suppose (2) holds, and let Ỹ = Y[[b1/2]], so
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that ỸỸ⊤ = I𝑑. We have:

⟨Py‖‖,b⟩ =
𝑚∑︁
𝑖=1

b𝑗‖Py(𝑗)‖2 =
𝑚∑︁
𝑗=1

‖Py(𝑗)
√︀
b𝑗‖2

= ‖PỸ‖2𝐹 = ⟨PỸ,PỸ⟩ = ⟨P,PỸỸ′⟩ = ‖P‖2𝐹 = 𝑘2,

that is, ⟨Py‖‖,b⟩ again does not depend on P. This concludes the proof.

The first condition in Lemma 4.5.1 is reasonable as it guarantees P preserves

geometric relations across spaces. On the other hand, whitening is a common pre-

processing step in feature learning [88] and correspondence problems [18].

The inner problem in (4.14) is a generalized version of the orthogonal Procrustes

Problem (§4.3). The following generalization of Lemma 4.3.1 shows that this problem

too has a closed-form solution when optimizing over Schatten ℓ𝑝-norm balls.

Lemma 4.5.2. Let M be a matrix with singular value decomposition given by M =

UΣV⊤ and let Σ = diag(𝜎), then

argmax
P:‖P‖𝑝≤𝑘

⟨P,M⟩ = U diag(s)V⊤ (4.15)

where s is such that ‖s‖𝑝 ≤ 𝑘 and s⊤𝜎 = 𝑘‖𝜎‖𝑞, for ‖ · ‖𝑞 the dual norm of ‖ · ‖𝑝.

Proof. Suppose P is such that ‖P‖𝑝 ≤ 𝑘, and let UP diag(s)V′P be its singular value

decomposition. This implies that ‖s‖𝑝 = ‖P‖ ≤ 𝑘. In addition,

⟨P,M⟩ = ⟨U⊤PV,Σ⟩ =
𝑑∑︁

𝑖=1

[U⊤PV]𝑖𝑖𝜎𝑖(M) =
𝑑∑︁

𝑖=1

u⊤𝑖 Pv𝑖𝜎𝑖(M)

≤
𝑑∑︁

𝑖=1

𝑠𝑖𝜎𝑖(M) = ⟨s,𝜎⟩

Here, the inequality holds because, by definition of the SVD decomposition, for every

𝑖 it must hold that ‖u𝑖‖2 = ‖v𝑖‖2 = 1 and

u⊤𝑖 Pv𝑖 ≤ sup
u⊥span{u1,...,u𝑖−1}
v⊥span{v1,...,v𝑖−1}

u⊤Pv

‖u‖‖v‖ ≤ 𝜎𝑖(P) = 𝑠𝑖 (4.16)
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Therefore:

sup
P:‖P‖𝑝≤𝑘

⟨P,M⟩ ≤ sup
s:‖s‖𝑝≤𝑘

⟨s,𝜎⟩ = 𝑘 sup
s:‖s‖𝑝≤1

⟨s,𝜎⟩ = 𝑘‖𝜎‖𝑞

where the last equality follows from the definition of dual norm for vectors.

Conversely, take any vector s with ‖s‖𝑝 = 𝑘, and define P̃(s) = U diag(s)V⊤.

Clearly, ‖P̃(s)‖𝑝 = 𝑘, so the supremum must satisfy:

sup
P
⟨P,M⟩ ≥ sup

s:‖s‖𝑝≤𝑘
⟨P̃(s),M⟩

= sup
s:‖s‖𝑝≤𝑘

⟨U diag(s)V⊤,UΣV⊤⟩ = sup
s:‖s‖𝑝≤𝑘

⟨diag(s),Σ⟩ = 𝑘‖𝜎‖𝑞

Therefore, we conclude that the optimal value of (4.15) is exactly 𝑘‖𝜎‖𝑞.
Furthermore, (4.16) holds with equality if and only if (u𝑖,v𝑖) coincide with the left

and right singular vectors of P. Thus, any P maximizing (4.15) must have the form

P = U diag sV′, with ‖s‖𝑝 ≤ 𝑘 and ⟨s,𝜎⟩ = 𝑘‖𝜎‖𝑞, as stated.

Therefore, the inner problem in (4.14) boils down to maximization of support

functions of vector-valued ℓ𝑝 balls, which can be done in closed form for any 𝑝 ≥ 1 by

choosing 𝑠𝑖 ∝ 𝜎𝑞−1
𝑖 [90]. This, in turn, greatly simplifies the alternating optimization

approach. For a fixed Γ, we can use Lemma 4.5.2 to obtain a closed-from solution P*.

On the other hand, for a fixed P, optimizing for Γ is a classic discrete optimal transport

problem with cost matrix C̃ = −X⊤PY,6 which can be solved with off-the-shelf OT

algorithms.

Next, we investigate what Lemma 4.5.2 implies for three salient cases, 𝑝 =∞ and

𝑝 = 2 and 𝑝 = 1.

4.5.1 The case 𝑝 =∞

The Schatten ℓ∞-norm is the spectral norm ‖𝐴‖∞ = 𝜎max(𝐴). To guarantee that the

identity is contained in ℱ∞, we take 𝑘∞ , 1. Note that combining either condition
6This is of course equivalent to solving the original problem (4.5), whose cost matrix has a simpler

interpretation.
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in Lemma 4.5.1 with this implies that ℱ∞ = O(𝑛). Therefore, this choice of norm

naturally encodes invariance to rotations and reflections. The dual characterization of

Schatten norms implies that

max
P∈ℱ∞

⟨XΓY⊤,P⟩ = ‖XΓY⊤‖* (4.17)

so that (4.14) becomes a single-block problem:

max
Γ∈Π(a,b)

‖XΓY⊤‖* (4.18)

Albeit succinct, this alternative representation of the problem is not easier to

solve. Despite having eliminated P, the objective is now non-convex with respect to Γ

(maximization of a convex function). Nevertheless, this formulation offers an interesting

geometric interpretation. When a,b are uniform distributions, then X̂ , XΓ is a

matrix whose columns correspond to the those of X transported to 𝒴 according to the

optimal barycentric mapping. Hence, X̂Y⊤ is the (shifted) cross-covariance matrix

of the features in 𝒳 and 𝒴 space, i.e., [X̂Y⊤]𝑖𝑗 = cov(�̂�𝑖, 𝑦𝑗), and its norm indicates

the strength of correlation of these features. Therefore, problem (4.18) essentially

seeks a transport coupling that maximizes the correlation of feature dimensions after

transportation. We leave exploration of direct techniques to optimize (4.18) for future

work. Here instead we rely on the generic alternating minimization scheme described

in the previous section.

4.5.2 The case 𝑝 = 1

Recall that the Schatten ℓ1-norm is the nuclear norm ‖𝐴‖* =
∑︀𝑛

𝑖=1 𝜎𝑖(𝐴). Therefore,

the invariance set of interest is now

ℱ1 =
{︀
P
⃒⃒
‖P‖* = 𝑑

}︀
, (4.19)

which, as before, contains the identity matrix.

Note that adding either condition in Lemma 4.5.1 yields, again, the set of or-
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thonormal matrices.7 Therefore, in the case one wants to rely on Lemma 4.5.2 to

solve the problem efficiently, this choice of invariance ends up being equivalent to the

𝑝 = ∞ case described in Section 4.5.1. However, we remark that this equivalence

is a consequence of the simplifying assumptions, and that one could still solve this

problem with the Frank-Wolfe approach described earlier, in which case the cases

𝑝 =∞ and 𝑝 = 1 would indeed lead to different solutions.

4.5.3 The case 𝑝 = 2

The Schatten ℓ2-norm is the Frobenius norm. Since ‖I𝑑‖𝐹 =
√
𝑑, we take ℱ2 ={︁

P
⃒⃒⃒
‖P‖𝐹 =

√
𝑑
}︁
. As before, we use Schatten norm duality to note that

max
P∈ℱ2

⟨XΓY⊤,P⟩ =
√
𝑑‖XΓY⊤‖𝐹 ,

whereupon problem (4.14) now becomes

max
Γ∈Π(a,b)

‖XΓY⊤‖𝐹 , (4.20)

which admits a similar interpretation to Problem (4.18), albeit for a different metric.

However, this subtle difference has important consequences, such as the following

connection.

Lemma 4.5.3. Consider the Gromov-Wasserstein problem for discrete measures 𝛼

and 𝛽 with probability vectors a and b:

min
Γ∈Π(a,b)

∑︁
𝑖,𝑗,𝑘,𝑙

𝐿(C𝑥
𝑖𝑘,C

𝑦
𝑗𝑙)Γ𝑖𝑗Γ𝑘𝑙, (4.21)

where (C𝑥, a) and (C𝑦,b) are (intra-space) measured similarity matrices and 𝐿 is a

loss function. For the choice of cosine similarity and squared loss 𝐿(𝑎, 𝑏) = 1
2
|𝑎− 𝑏|2,

Problems (4.21) and (4.20) are equivalent.

7The intersection of the Schatten ℓ2 and ℓ∞ norm balls, defined in terms of that of the ℓ2 and ℓ∞
vector norm balls, occurs in the extreme points of the latter (see Fig. 4-1).
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Proof. For the choice of cosine metric, and assuming without loss of generality that the

columns of X and Y are normalized, the similarity matrices are given by C𝑥 = X⊤X

and C𝑦 = Y⊤Y. In addition, let 𝐿 be the ℓ2 loss, i.e., 𝐿(𝑎, 𝑏) = |𝑎 − 𝑏|2. Then the

objective in problem (4.21) becomes:

ℒ(Γ) =
∑︁
𝑖,𝑗,𝑘,𝑙

(︀
C𝑥

𝑖𝑘 −C𝑦
𝑗𝑙

)︀2
Γ𝑖𝑗Γ𝑘𝑙

=
∑︁
𝑖,𝑗,𝑘,𝑙

(︀
C𝑥

𝑖𝑘)
2Γ𝑖𝑗Γ𝑘𝑙 − 2

∑︁
𝑖,𝑗,𝑘,𝑙

(︀
C𝑥

𝑖𝑘C
𝑦
𝑗𝑙

)︀
Γ𝑖𝑗Γ𝑘𝑙 +

∑︁
𝑖,𝑗,𝑘,𝑙

(︀
C𝑦

𝑗𝑙

)︀2
Γ𝑖𝑗Γ𝑘𝑙

Since Γ ∈ Π(a,b), the first of these terms becomes

∑︁
𝑖,𝑘

(︀
C𝑥

𝑖𝑘)
2
∑︁
𝑗,𝑙

Γ𝑖𝑗Γ𝑗𝑙 =
∑︁
𝑖,𝑘

(︀
C𝑥

𝑖𝑘)
2a𝑖a𝑘 = a⊤(C𝑥)2a

where the last equation follows from the definition of the transportation polytope.

Crucially, this term does not depend on Γ anymore. Analogously, the last term in

ℒ(Γ) does not depend on Γ either, so

argmin
Γ∈Π(a,b)

ℒ(Γ) = argmax
Γ∈Π(a,b)

∑︁
𝑖,𝑗,𝑘,𝑙

(︀
C𝑥

𝑖𝑘C
𝑦
𝑗𝑙

)︀
Γ𝑖𝑗Γ𝑘𝑙 (4.22)

On the other hand, consider problem (4.20). The objective it seeks to maximize is

‖XΓY⊤‖2𝐹 = ⟨XΓY⊤,XΓY⊤⟩

= ⟨X⊤XΓ,ΓYY⊤⟩

=
𝑛∑︁

𝑖=1

𝑚∑︁
𝑙=1

[︀
X⊤XΓ

]︀
𝑖𝑙

[︀
ΓY⊤Y

]︀
𝑖𝑙

=
𝑛∑︁

𝑖=1

𝑚∑︁
𝑙=1

[︀
C𝑥Γ

]︀
𝑖𝑙

[︀
ΓC𝑦

]︀
𝑖𝑙

=
𝑛∑︁

𝑖=1

𝑚∑︁
𝑙=1

⎛⎝ 𝑛∑︁
𝑘=1

C𝑥
𝑖𝑘Γ𝑘𝑙

⎞⎠⎛⎝ 𝑚∑︁
𝑗=1

Γ𝑖𝑗C
𝑦
𝑗𝑙

⎞⎠ =
𝑛∑︁

𝑖=1

𝑚∑︁
𝑙=1

𝑛∑︁
𝑘=1

𝑚∑︁
𝑗=1

C𝑥
𝑖𝑘Γ𝑘𝑙Γ𝑖𝑗C

𝑦
𝑗𝑙

which is equal to (4.22). Hence, Problems (4.20) and (4.21) are equivalent.
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4.6 Optimization Approaches

At this point, we are ready to discuss specific optimization approaches to the invariant

optimal transport problem. In this section, we develop optimization approaches for

each of the three equivalent formulations of the problem discussed in Section 4.4. As

we will see later on (§4.8.2), the alternating minimization approach turns out to be the

most stable and better performing in practice among these, so we discuss that method

in considerably more detail than the others. Before developing the algorithms, however,

we begin by deriving the necessary optimization ingredients (gradients and projects)

that these rely on. Unless the reader has a specific interest in these derivations, the

next subsection can be safely ignored or skimmed through.

4.6.1 Ingredients: gradients and projections

All the optimization methods proposed in this section—except, notably, the alternating

minimization approach—are gradient-based, so we derive here first- and second-order

derivatives of the three equivalent formulations of the invariant-OT problem described

in Section 4.4, and discuss projections into the two constraint spaces of interest. In

the interest of generality, we provide gradient derivations in the most general form

possible. In particular, we will not assume a specific form of the invariance set ℱ
yet—in particular, it is not necessarily defined in terms of Schatten norms as in the

previous section—unless otherwise noted.

We begin with two simple lemmas that will greatly simplify the notation throughout

the remainder of this section, and which provide useful equivalences exploited by

the subsequent results. The remaining four propositions each provide first- and

second-order derivatives of the different views of Problem (4.6).

Lemma 4.6.1. Let Γ ∈ Π(a,b). For any vectors u ∈ R𝑛 and v ∈ R𝑚, we have

⟨Γ,u⊕ v⟩ = ⟨u, a⟩+ ⟨v,b⟩ (4.23)

where ⊕ is the Kronecker sum as defined in Section 2.1.
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Proof. Recall that Γ ∈ Π(a,b) implies that the row and column sums of Γ agree with

a and b. Hence,

⟨Γ,u⊕ v⟩ =
∑︁
𝑖𝑗

Γ𝑖𝑗[u⊕ v]𝑖𝑗 =
∑︁
𝑖𝑗

Γ𝑖𝑗(u𝑖 + v𝑗)

=
∑︁
𝑖

u𝑖

∑︁
𝑗

Γ𝑖𝑗 +
∑︁
𝑗

v𝑗

∑︁
𝑖

Γ𝑖𝑗 =
∑︁
𝑖

u𝑖a𝑖 +
∑︁
𝑗

v𝑗b𝑗

for which the conclusion follows.

Lemma 4.6.2. For the squared euclidean cost 𝑐(x,y) = ‖x− y‖22, the transportation

cost can be written as:

𝒯𝑐(𝑓,Γ; a,b) = −2⟨Γ,X⊤𝑓(Y)⟩+ ⟨Γ,x‖‖ ⊗ 1𝑚⟩+ ⟨Γ,1𝑛 ⊗ 𝑓(y)‖‖⟩ (4.24)

where x‖‖ is the vector with row-wise norms of X, i.e., x‖‖ = (‖x(1)‖2, . . . , ‖x(𝑛)‖2),
and analogously for 𝑓(y)‖‖. Furthermore, for a feasible Γ ∈ Π(a,b), this is equivalent

to:

𝒯𝑐(𝑓,Γ; a,b) = −2⟨Γ,X⊤𝑓(Y)⟩+ Tr(Cova(X)) + Tr(Covb(𝑓(Y))) (4.25)

= −2⟨Γ,X⊤𝑓(Y)⟩+
𝑛∑︁

𝑖=1

a𝑖‖x(𝑖)‖22 +
𝑚∑︁
𝑗=1

b𝑖‖𝑓(y(𝑗))‖22 (4.26)

where Cova(X) = X[[a]]X⊤ and Covb(𝑓(X)) = 𝑓(Y)[[b]]𝑓(Y)⊤ are weighted covari-

ance matrices.

Proof. For the squared euclidean cost, the cost matrix has entries

[C(X, 𝑓(Y))]𝑖𝑗 = ‖x(𝑖)‖22 + ‖y(𝑗)‖22 − 2⟨x(𝑖),y(𝑗)⟩, (4.27)

and thus can be expressed as

C(X, 𝑓(Y)) = −2X⊤𝑓(Y) + x‖‖ ⊕ 𝑓(y)‖‖ (4.28)

= −2X⊤𝑓(Y) + x‖‖ ⊗ 1𝑚 + 1𝑛 ⊗ 𝑓(y)‖‖ (4.29)
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this yields the first part of the result. Now, for a feasible Γ, we can use Lemma 4.6.1

on step (4.28) to obtain:

⟨Γ,C(X, 𝑓(Y))⟩ = −2⟨Γ,X⊤𝑓(Y)⟩+ ⟨x‖‖, a⟩+ ⟨𝑓(y)‖‖,b⟩

= −2⟨Γ,X⊤𝑓(Y)⟩+
𝑛∑︁

𝑖=1

a𝑖‖x(𝑖)‖22 +
𝑚∑︁
𝑗=1

b𝑖‖𝑓(y(𝑗))‖22

= −2⟨Γ,X⊤𝑓(Y)⟩+ Tr(X⊤X[[a]]) + Tr(𝑓(Y)⊤𝑓(Y)[[b]])

= −2⟨Γ,X⊤𝑓(Y)⟩+ Tr(X[[a]]X⊤) + Tr(𝑓(Y)[[b]]𝑓(Y)⊤)

which proves the second part of the statement.

Remark 4.6.3. Note that Lemma 4.6.2 implies that the problems minΓ 𝒯‖𝑥−𝑦‖2(𝑓,Γ; a,b)
and minΓ 𝒯−⟨𝑥,𝑦⟩(𝑓,Γ; a,b) are equivalent.

The following result provides explicit first- and second-order derivatives for the

simultaneous optimization objective 𝒯 (P,Γ;𝛼, 𝛽) for the case where ℱ consists of

linear operators, i.e., ℱ = {𝑓 | 𝑓(y) = Py, P ∈ R𝑑×𝑑}.

Proposition 4.6.4 (Derivatives of transportation cost with linear transformation).

For the squared euclidean cost 𝑐(x,y) = ‖x− y‖22 and 𝑓(y) = Py we have:

𝜕
𝜕Γ
𝒯𝑐(P,Γ; a,b) = C(X,PY) (4.30)

𝜕
𝜕P
𝒯𝑐(P,Γ; a,b) = 2PY[[b]]Y⊤ − 2XΓY⊤ (4.31)

𝜕2

𝜕Γ2𝒯𝑐(P,Γ; a,b) = 0𝑛×𝑚 (4.32)

𝜕2

𝜕P2𝒯𝑐(P,Γ; a,b) = 2Y[[b]]Y⊤ ⊗ I𝑑×𝑑 (4.33)

Proof. Directly from the definition of 𝒯𝑐(P,Γ; a,b), we see that 𝜕
𝜕Γ
𝒯𝑐(P,Γ; a,b) =

C(X,PY), and therefore 𝜕2

𝜕Γ2𝒯𝑐(P,Γ; a,b) = 0𝑛×𝑚.

Now, to compute derivatives with respect to P, we assume Γ is feasible, and plug

in the form of 𝑓(Y) = PY in Equation (4.25), yielding:

𝒯𝑐(P,Γ; a,b) = −2⟨Γ,X⊤PY)⟩+ Tr(Cova(X)) + Tr(Covb(PY)) (4.34)
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The derivative with respect to P of the first of these terms is immediate (by rewriting

as −2⟨P,XΓY⊤⟩), while the second one does not depend on P. For the third one we

have

𝜕
𝜕P

Tr(Covb(PY)) = 𝜕
𝜕P

Tr(PCovb(Y)P) = P[Covb(Y) + Covb(Y)⊤] = 2PCovb(Y)

which yields the desired result. Finally, the second derivative with respect to P can

be obtained immediately from this.

Remark 4.6.5. Note that if P is orthogonal, Tr(Cov𝑏(PY)) = Tr(Cov𝑏(Y)) (equiva-

lently, 𝑓(y)‖‖ = y‖‖), so in that case in the proof of Proposition 4.6.4 in Eq. (4.34) only

the first term depends on P, yielding instead 𝜕
𝜕P
𝒯𝑐(P,Γ; a,b) = −2XΓY⊤. On the

other hand, if Y is 𝜈-whitened (i.e., Y[[𝜈]]Y⊤ = I𝑑×𝑑) we end up with 2P⊤−2YΓ⊤X⊤.

We will often be interested in solving the entropy-regularized version of the

transportation instead, for which we derive an analogous result below.

Proposition 4.6.6 (Derivatives of entropy-regularized transportation cost with linear

transformation). For the squared euclidean cost 𝑐(x,y) = ‖x− y‖22, we have:

𝜕
𝜕Γ
𝒯 𝜀
𝑐 (P,Γ; a,b) = C(X,PY) + 𝜀 log Γ (4.35)

𝜕
𝜕P
𝒯 𝜀
𝑐 (P,Γ; a,b) = 2PY[[b]]Y⊤ − 2XΓY⊤ (4.36)

𝜕2

𝜕Γ2𝒯 𝜀
𝑐 (P,Γ; a,b) = 𝜀[[vec(Γ)−1]] (4.37)

𝜕2

𝜕P2𝒯 𝜀
𝑐 (P,Γ; a,b) = 2Y[[b]]Y⊤ ⊗ I𝑑×𝑑 (4.38)

Proof. Starting from Lemma 4.6.4 we only need to compute derivatives of 𝐻(Γ). Note

that:

𝜕𝐻(Γ)

𝜕Γ𝑖𝑗

=
𝜕

𝜕Γ𝑖𝑗

(︀
−Γ𝑖𝑗(log Γ𝑖𝑗 − 1)

)︀
= − log Γ𝑖𝑗 − 1 + 1 = − log Γ𝑖𝑗 (4.39)

so 𝜕
𝜕Γ
− 𝜀H(Γ) = 𝜀 log Γ, where the log is to be understood element-wise. This yields
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Equation (4.35). Taking derivatives again we get

𝜕𝐻(Γ)

𝜕Γ𝑘𝑙𝜕Γ𝑖𝑗

=

⎧⎪⎪⎨⎪⎪⎩
−Γ−1𝑖𝑗 if 𝑖 = 𝑘, 𝑗 = 𝑙

0 otherwise
, (4.40)

which can be expressed in matrix form as [[vec(Γ)−1]], resulting in Equation (4.37).

Since the entropy regularization term is only a function of Γ and not of P, the

derivatives with respect to the latter are the same as in Proposition 4.6.4.

We now turn our attention to the partial (single-block) objectives (4.10) and (4.11).

Clearly, for these we only need to provide derivatives with respect one (the only)

optimization variable: either Γ or P. For the sake of conciseness, we now combine

the derivatives for the unregularized and entropy-regularized versions of the problems

each into one a single result.

Proposition 4.6.7 (Derivatives of 𝒯𝑐�ℱ(Γ; a,b) and 𝒯 𝜀
𝑐�ℱ(Γ; a,b) with linear transfor-

mation). For the squared euclidean cost 𝑐(x,y) = ‖x− y‖22, we have:

𝜕
𝜕Γ
𝒯𝑐�ℱ(Γ; a,b) = C(X,P*Y) (4.41)

𝜕
𝜕Γ
𝒯 𝜀
𝑐�ℱ(Γ; a,b) = C(X,P*𝜀Y) + 𝜀 log Γ (4.42)

𝜕2

𝜕Γ2𝒯𝑐�ℱ(Γ; a,b) = 0𝑛×𝑚 (4.43)

𝜕2

𝜕Γ2𝒯 𝜀
𝑐�ℱ(Γ; a,b) = 𝜀[[vec(Γ)−1]] (4.44)

where P* = argminP∈ℱ 𝒯𝑐(P,Γ; a,b) and P*𝜀 = argminP∈ℱ 𝒯 𝜀
𝑐 (P,Γ; a,b) respectively.

Proof. Since both 𝒯𝑐�ℱ(𝛾; a,b) and 𝒯 𝜀
𝑐�ℱ(𝛾; a,b) are continuously differentiable, we can

use the Envelope Theorem to obtain their derivatives through their inner optimization

problem. Thus, we only need to plug-in the optimal values of P under these objectives

in the derivatives for Γ computed in Propositions 4.6.4 and 4.6.6, which immediately

yields the stated identities.
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Proposition 4.6.8 (Derivatives of OT𝑐(𝛼, 𝑓♯𝛽) and OT𝜀
𝑐(𝛼, 𝑓♯𝛽) with linear transfor-

mation). For the squared euclidean cost 𝑐(x,y) = ‖x− y‖22, we have:

𝜕
𝜕P

OT𝑐(𝛼,P♯𝛽) =
𝜕
𝜕P

OT𝜀
𝑐(𝛼,P♯𝛽) = 2PY[[b]]Y⊤ − 2XΓ*Y⊤ (4.45)

𝜕2

𝜕P2 OT𝑐(𝛼,P♯𝛽) =
𝜕2

𝜕P2 OT𝜀
𝑐(𝛼,P♯𝛽) = 2Y[[b]]Y⊤ ⊗ I𝑑×𝑑 (4.46)

where Γ* = argminΓ∈Π(a,b) 𝒯𝑐(P,Γ; a,b).

Proof. This is again a direct application of the Envelope Theorem combined with

Lemma 4.6.4.

4.6.2 Alternating minimization

Recall that whenever the conditions of Lemma 4.5.1 satisfied, Lemma 4.3.1 guarantees

that the inner problem has a closed-form solution. In that case, we propose to solve

problem (4.14) with alternating maximization on Γ and P. Naturally, this falls within

the scope of the first of the three equivalent objectives, namely the joint-optimization:

min
𝛾∈Π(𝛼,𝛽)
𝑓∈ℱ𝑝

𝒯𝑐(𝑓, 𝛾;𝛼, 𝛽)

where we are optimizing 𝒯𝑐(𝑓, 𝛾;𝛼, 𝛽) by block coordinate descent on 𝑓 and 𝛾. Both

for computational efficiency and performance reasons, we usually solve the entropy-

regularized objective 𝒯 𝜀
𝑐 (𝑓, 𝛾;𝛼, 𝛽) instead, which under the aforementioned simplifying

conditions would correspond to solving the problem:

max
Γ∈Π(a,b)

max
P∈ℱ
⟨Γ,X⊤PY⟩+ 𝜀H(Γ). (4.47)

For a fixed Γ, Lemma 4.5.2 shows a closed-from solution P* at the cost of an 𝑑× 𝑑
SVD, i.e., 𝑂(𝑑3). For a fixed P, the problem in Γ is clearly a traditional optimal

transport problem, which can be solved with the methods discussed in Section 2.5.

For example, for the entropy-regularized objective, the optimal Γ* can be obtained

in 𝑂(𝑁3 log𝑁) with the Sinkhorn-Knopp algorithm and its variants. Note that the
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Sinkhorn algorithm can be applied even to the original (non-regularized) problem (4.14)

by relying on inexact alternating minimization methods that allow for approximate

solution of intermediate steps [53, 129]. Besides providing an alternative algorithmic

approach, this observation could be used to prove convergence rates for problem (4.14).

Here, we instead focus on optimizing the regularized formulation (4.47).

Alternating optimization methods for non-convex objectives are known to be

sensitive to initialization [91, 83]. Indeed, a key component of fully unsupervised

approaches to feature alignment is finding good quality initializations. For example, for

unsupervised word embedding alignment, state-of-the-art methods rely on additional—

often heuristic— steps to generate good initial solutions, such as adversarially-trained

neural networks [42, 183, 182], which themselves are often very sensitive to initialization,

sometimes failing completely on the same problem for different random restarts [18].

Neither Problem (4.14) nor (4.47) is jointly concave in Γ and P, thus facing in

principle a similar challenge in terms of sensitivity to initialization. However, in (4.47)

the strength of the entropic regularization controls the extent of non-concavity: strong

regularization leads to a more concave objective, while 𝜀→ 0 leads to an increasingly

more non-concave objective. We propose to leverage this observation to alleviate

sensitivity to initialization by using an annealing scheme on the regularization term.8

Starting from a large value of 𝜀, we decay this value in each iteration by setting

𝜀𝑡 = 𝜁 × 𝜀𝑡−1 with 𝜁 ∈ (0, 1), until a minimum value 𝜀 is reached. We stop the method

when the value of the objective converges. The advantage of this annealing approach

is that it avoids ad-hoc initialization and eliminates the need for hyper-parameter

tuning on 𝜀, since any sufficiently large choice of 𝜀0 achieves the same objective. In

all our experiments, we use the same parameter values 𝜀0 = 1 and decay 𝜁 = 0.95.

The method described so far, summarized as Algorithm 5 here, is used in our first

set of experiments. Direct application of this method leads to high-quality solutions for

small and mid-sized problems. However, scaling up to very large sets of points—e.g.,

hundreds of thousands of word embeddings in the word translation application—can

8As was recently brought to the author’s attention, similar annealing schemes have been used in
other assignment and optimal transport settings [104, 155]
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be prohibitive.

We address this issue by dividing the problem into two phases. In the first stage,

we solve a smaller problem (by taking a subsample of 𝑘 points on each domain thus

leading to smaller Γ and faster OT solution, but P of same size). Once the first phase

reaches convergence, we use the solution P* of the first stage to initialize the full-size

problem. Note that while this might resemble other approaches that also consider a

reduced set of points in their initialization step [42, 76], a crucial difference is that

here we rely on the same optimization problem (4.47) in both stages, although with

different problem sizes.

We experimented with various choices of parameter 𝑘, and observed that the

algorithm is remarkably robust to the choice of this parameter. We conjecture that

the ordering in which word embeddings are provided (higher-frequency words first, in

every language) helps ensure that the solution of the initial problem of reduced size is

consistent with the full-size problem.9

While the end performance is consistent regardless of the choice of sub-sample

size 𝑘, there is naturally a trade-off in run time of the two stages. While solving a

smaller initial problem is obviously faster, we observed that in such cases the second

stage required more iterations to converge, suggesting that the initial P* fed into the

second stage was of lower quality (further from the optimal for the full-size problem).

In the results presented in Section 4.8.4, we take 𝑘 as large as possible while keeping

the time-per-iteration reasonable: 𝑘 = 5000.

Note that this strategy of bootstrapping solutions of smaller problems can be

applied repeatedly, to increasingly grow the problem size over multiple stages. While

we did not require to do so in our experiments, it might be an appealing approach for

solving extremely large problems.

9This, in fact, points to an issue mostly ignored in previous work on this task: the order of
the word embeddings leaks important—albeit noisy—correspondence information, which various
methods presented as ‘fully-unsupervised’ seem to rely on one way or another, yet rarely acknowledge
it.

101



Algorithm 5: Alternating Minimization for OT with Schatten Invariances
Input: Data matrices and histograms (X, a), (Y,b)
Parameters :Order of invariance 𝑝 and radius 𝑘𝑝;

initial and final entropy regularization 𝜀0 and 𝜀;
entropy regularization decay rate 𝜂.

Output: Transport coupling Γ ∈ R𝑛×𝑚
+ and global mapping P ∈ O(𝑑)

/* Initialize feasible transformation in ℱ𝑝 */
1 U,Σ,V⊤ ← SVD(RandomMatrix(𝑑× 𝑑))
2 𝜎 ← diag(Σ)
3 s← 𝑘𝑝 · 𝜎/‖𝜎‖𝑝
4 P = U diag(s)V⊤

5 𝜀← 𝜀0
6 while not converged do

/* Compute distances w.r.t. current mapping P */
7 CP ← PairwiseDistances(X,PY)

/* Γ-Step via Sinkhorn-Iterations */
8 v← 1

9 K← exp{−CP/𝜀}
10 while not converged do
11 u← a⊘Kv
12 v← b⊘K⊤u

13 Γ← diag(u)K diag(v)
/* P-Step via Generalized Procrustes */

14 U,Σ,V⊤ ← SVD(XΓY⊤)
15 𝜎 ← diag(Σ)
16 𝑞 ← 𝑝

𝑝−1
17 s← 𝑘𝑝 · 𝜎𝑞−1/‖𝜎𝑞−1‖𝑝
18 P = U diag(s)V⊤

/* Anneal entropy regularization */
19 𝜀← max{𝜀 * 𝜂, 𝜀}
20 return Γ,P
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4.6.3 Joint gradient descent

In the previous section, we proposed solving the joint objective 𝒯𝑐(𝑓,Γ; a,b) via

alternating minimization. Instead of solving these subproblems to completion, an

alternative approach would be to take gradient steps simultaneously on the two

optimization blocks (i.e., on Γ and 𝑓). Naturally, this being a constrained optimization

problem on the constraint set 𝒵 = Π(a,b)×ℱ𝑝, the gradients would need to be project

back to these sets. However, given the very different geometries of these constraint

sets (i.e., the correct notion of projection on the former uses the KL metric, while for

the latter euclidean projections are more meaningful), here we advocate against this

approach and do not consider it further. In the next two sections, we instead explore

gradient descent schemes on each of the two blocks of variables independently.

4.6.4 Single-block gradient descent

Recall from the equivalent expressions (4.10) and (4.11) of the invariant OT objective

that we can “fold” the minimization with respect to one of the variables into the loss.

In this case, evaluating the loss (and computing gradients, as discussed in Section 4.6.1)

entails solving an optimization problem on the other variable.

Descent on 𝑓

Let us first consider Problem (4.11), where minimization over the transportation

polytope is “folded” into the objective, yielding a minimization over transformations in

ℱ of the optimal transport cost, i.e., min𝑓∈ℱ OT𝑐(𝛼, 𝑓♯𝛽). In Section 2.7 we discussed

the use of optimal transport distances as a learning loss. Recall that to avoid the

problem of biased gradients the entropy-regularized problem OT𝜀, it is common

practice to use the “normalized” Sinkhorn Divergence (2.20) instead. We can trivially

define a generalized version of this divergence that includes the transformation 𝑓 in

its computation:

SD𝜀(𝛼, 𝑓♯𝛽) ,W𝜀(𝛼, 𝑓♯𝛽)− 1
2

(︀
W𝜀(𝛼, 𝛼) +W𝜀(𝑓♯𝛽, 𝑓♯𝛽)

)︀
. (4.48)
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With this, our final optimization objective in this setting takes the form:

min
𝑓∈ℱ

SD𝜀(𝛼, 𝑓♯𝛽) (4.49)

In Proposition 4.6.8 we derived gradients and Hessians for OT(𝛼, 𝑓♯𝛽), which

trivially yield their counterparts for SD𝜀(𝛼, 𝑓♯𝛽). Therefore, we can solve this as a

constrained optimization problem. Depending on the invariance class, we propose

different approaches. If ℱ is a well-behaved manifold over which projections can be

computed efficiently, such as the Stiefel manifold, we can use manifold optimization

to solve this problem [181, 177]. In our experiments we use the pymanopt toolbox for

optimization over the Stiefel manifold.

Alternatively, if one wishes to maintain a more general class of invariances ℱ , the
problem can be solved by parametrizing this class with deep neural networks. Since

the objective is fully differentiable, it can be used to learn end-to-end the parameters

of this neural network with backpropagation and stochastic gradient descent.

In either of these approaches, there are two possibilities for computing gradients.

We can use the explicit gradients derived in Section 4.6.1, or leverage modern packages

for automatic differentiation.

Descent on Γ

Now, we revisit instead Problem (4.10), where the optimization over the invariance

set has been folded into the cost objective, yielding a cost-invariant optimal transport

problem, i.e., minΓ∈Π(a,b) 𝒯𝑐�ℱ(Γ; a,b). In this case, the problem can be solved via

constrained optimization approaches, such as conditional or projected gradient methods.

We use a projected gradient approach, similar to that of Peyré et al. [140]. Using the

KL projection and a step size 𝜏 , the iterations are computed as

Γ← ProjKL
Π(a,b)

(︂
Γ⊙ 𝑒−𝜏(∇𝒯𝑐�ℱ (Γ;a,b))

)︂
(4.50)

As for the single-block descent on 𝑓 , gradients can be computed explicitly (using

Proposition 4.6.7) or by means of automatic differentiation. The stepsize is a crucial
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hyperparameter in gradient descent methods, and here its relation with the regular-

ization parameter 𝜀 is particularly important. In fact, for a very specific choice of

stepsize, project gradient descent on 𝒯𝑐�ℱ(Γ; a,b) becomes equivalent to the alternating

minimization approach of the previous section, as shown in the following result.

Proposition 4.6.9. For the choice of stepsize 𝜏 = 1/𝜀, iteration (4.50) becomes:

P* ← argmin
P∈ℱ𝑝

⟨Γ,C(X,PY)⟩

Γ← Sinkhorn(C(X,P*Y), a,b, 𝜀)

Proof. As discussed in Section 2.4, the projection onto Π(a,b) according to the KL

divergence leads to a regularized OT problem:

ProjKL
Π(a,b)(M) , argmin

Γ∈Π(a,b)

KL(Γ ‖M) = argmin
Γ∈Π(a,b)

OT𝜀
−𝜀 log(M)(a,b)

Taking log of the expression in iteration (4.50), and plugging in the gradient value

computed in Proposition 4.6.7, we get

log
(︀
Γ⊙ 𝑒−𝜏(∇𝒯𝑐�ℱ (𝛾;𝛼,𝛽))

)︀
= log Γ− 𝜏

(︀
∇𝒯𝑐�ℱ(𝛾;𝛼, 𝛽)

)︀
= log Γ− 𝜏

(︀
C(X,P*Y) + 𝜀 log Γ

)︀
= −𝜏C(X,P*Y) + (1− 𝜀𝜏) log Γ = −1

𝜀
C(X,P*Y)

Therefore, the OT problem related to the KL projection has precisely C(X,P*Y) as

a cost (after cancellation of signs and 𝜀), so the updated Γ can be computed with the

Sinkhorn algorithm on this cost matrix as stated.

As Peyré et al. [140] note for their own approach the iterations (4.50) are guar-

anteed to converge for small enough stepsize 𝜏 . The simplifying choice 𝜏 = 1/𝜀 in

Proposition 4.6.9 is usually too large for this guarantee to hold. In our experiments, we

observed monotonously decreasing objectives value and good empirical performance

for most reasonable stepsize values and schemes, including—unsurprisingly, given the

success of the alternating minimization approach— for 𝜏 = 1/𝜀.
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4.7 An Alternative Gromov-Wasserstein Approach

As discussed in Section 4.3.2, there exists a recent generalization of the optimal

transport problem that allows defining the problem over incomparable spaces, i.e.,

when a metric between them is not available. The Gromov-Wasserstein distance

[125] generalizes optimal transport by comparing the metric spaces directly instead

of samples across the spaces. In other words, this framework operates on distances

between pairs of points calculated within each domain and measures how these

distances compare to those in the other domain. Thus, it requires a weaker but easy

to define notion of distance between distances, and operates on pairs of points, turning

the problem from a linear to a quadratic one. In Figure 4-2 we show an intuitive

description of why the Gromov-Wasserstein distance is well suited to our motivating

problem of unsupervised word embedding alignment.
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Figure 4-2: The Gromov-Wasserstein distance is well suited for the task of cross-lingual
alignment because it relies on relational rather than positional similarities to infer
correspondences across domains. Computing it requires two intra-domain similarity
(or equivalently cost) matrices (left & center), and it produces an optimal coupling
of source and target points with minimal discrepancy cost (right).

Compared to the classic optimal transport problem, computing the Gromov-

Wasserstein distance is substantially harder since the objective is now not only

non-linear, but non-convex too.10 In addition, it requires operating on a fourth-order

tensor, which would be prohibitive in most settings. Surprisingly, this problem can be

10In fact, the discrete (Monge-type) formulation of the problem is essentially an instance of the
well-known (and NP-hard) quadratic assignment problem (QAP).
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optimized efficiently with first-order methods, whereby each iteration involves solving

a traditional optimal transport problem [163, 140].

Recall that the Gromov-Wasserstein problem corresponds to a proper distance

(§4.3.2). Therefore, when applied to the problem of unsupervised word embedding

alignment, this approach yields a fascinating accompanying notion: the Gromov-

Wasserstein distance between languages, a measure of semantic discrepancy purely based

on the relational characterization of their word embeddings. Owing to Theorem 4.3.2,

such values can be interpreted as distances, so that, e.g., the triangle inequality

holds among them. In Section 4.8.5 we compare various languages in terms of their

GW-distance.

While the pure Gromov-Wasserstein approach leads to high-quality solutions, it is

best suited to small-to-moderate problems,11 since its optimization becomes prohibitive

for very large problems. For such settings, we propose a two-step approach in which

we first match a subset of the samples via the optimal coupling, after which we learn

an orthogonal mapping through a modified Procrustes problem. Formally, suppose

we solve problem (4.2) for a reduced matrices X1:𝑘 and Y𝑖:𝑘 consisting of the first

columns 𝑘 of X and Y, respectively, and let Γ* be the optimal coupling. We seek an

orthogonal matrix that best recovers the barycentric mapping implied by Γ*. Namely,

we seek to find P which solves:

min
P∈O(𝑛)

‖XΓ* −PY‖22 (4.51)

It is easy to show that this is equivalent to a Procrustes problem (c.f. (4.1)), so it

has a closed-form solution in terms of a singular value decomposition. Namely, the

solution to (4.51) is P* = UV⊤, where UΣV* = X1:𝑚Γ
*Y⊤1:𝑚. After obtaining this

projection, we can immediately map the rest of the embeddings via ŷ(𝑗) = P*y(𝑗).

We end this section by discussing parameter and configuration choices. To leverage

the fast algorithm of Peyré et al. [140], we always use the 𝐿2 distance as the loss

function 𝐿 between cost matrices. On the other hand, we observed throughout our

11As shown in the experimental section, we are able to run problems of size in the order of
|𝑉𝑠| ≈ 105 ≈ |𝑉𝑡| on a single machine without relying on GPU computation.

107



Algorithm 6: Gromov-Wasserstein Computation for Embedding Alignment
Input: Source and target embeddings X ∈ R𝑑×𝑛, Y ∈ R𝑑×𝑚, and their

corresponding probability vectors a ∈ Σ𝑛,b ∈ Σ𝑚.
Parameters :Regularization strength 𝜀.
Output: Transport coupling Γ ∈ R𝑛×𝑚

+ and global mapping P ∈ O(𝑑)
/* Compute intra-domain similarities */

1 C𝑠 ← PairwiseDistances(X,X)
2 C𝑡 ← PairwiseDistances(Y,Y)
3 C𝑠𝑡 ← C2

𝑠a1
⊤
𝑚 + 1𝑛b(C

2
𝑡 )
⊤

4 while not converged do
/* Compute pseudo-cost matrix (Eq. (4.4)) */

5 ĈΓ ← C𝑠𝑡 − 2C𝑠ΓC
⊤
𝑡

/* Sinkhorn-Iterations */
6 u← 1

7 K← exp{−ĈΓ/𝜀}
8 while not converged do
9 u← a⊘Kv

10 v← b⊘K⊤u

11 Γ← diag(u)K diag(v)

/* [Optional] Learn explicit transformation to extrapolate */
12 U,Σ,V⊤ ← SVD(XΓY⊤)
13 P = UV⊤

14 return Γ,P

experiments that the choice of cosine distance as the metric in both spaces consistently

leads to better results, which agrees with common wisdom on computing distances

between word embeddings. This leaves us with a single hyper-parameter to control:

the entropy regularization term 𝜀. By applying any sensible normalization on the cost

matrices (e.g., dividing by the mean or median value), we are able to almost entirely

eliminate sensitivity to that parameter. In practice, we use a simple scheme in all

experiments: we first try the same fixed value (𝜀 = 5× 10−5), and if the regularization

proves too small (by leading to floating-point errors), we instead use 𝜀 = 1× 10−4.

We never had to go beyond these two values in all our experiments.

We emphasize that at no point we use train (let alone test) supervision available

with many datasets—model selection is done solely in terms of the unsupervised

objective. Pseudocode for the full method (with 𝐿 = 𝐿2 and cosine similarity) is

shown here as Algorithm 6.
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4.8 Experiments

Through this experimental evaluation we seek to: (i) validate the framework of

optimal transport with invariances and compare the various optimization methods

discussed before in a controlled setting (§4.8.2), (ii) understand their optimization

dynamics (§4.8.3), (iii) evaluate their performance on benchmark cross-lingual word

embedding tasks (§4.8.4), and (iv) qualitatively investigate the notion of distance-

between-languages that the Gromov Wasserstein approach provides (§4.8.5). Due

to the computational burden of the word embedding alignment task, we select from

among the optimization approaches proposed in Section 4.6 the best performing one,

and compare that one against third-party state-of-the-art methods.

When evaluating our proposed approaches in the context of word embedding

alignment, rather than focusing solely on prediction accuracy, we seek to demonstrate

that these offer a fast, principled, and robust alternative to alternative methods for

these unsupervised alignment tasks. Here again, as was the case throughout this

chapter, our focal point is the Schatten invariance framework solved by alternating

optimization, so most of our experiments revolve around this method.

4.8.1 Evaluation tasks and methods

Datasets For the first set of experiments we use synthetic datasets consisting of

simple 2D and 3D point clouds, in which one of the two clouds is obtained by

applying a (known) transformation on the other. The second—and main—part of the

experimental evaluation revolves around the task of unsupervised word embedding

alignment. For this, we consider two standard benchmark tasks for cross-lingual

embeddings. First, we consider the dataset of Conneau et al. [42], which consists of

word embeddings trained with fastText [28] on Wikipedia and parallel dictionaries

for 110 language pairs. Here, we focus on the language pairs for which they report

results: English (En) from/to Spanish (Es), Italian (It), French (Fr), German (De),

Russian (Ru) and simplified Chinese (Zh). We also experiment with the—substantially
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harder12—dataset of [51], which has been extensively compared against in previous

work. It consists of embeddings and dictionaries in four pairs of languages; En from/to

Es, It, De, and Fi (Finnish).

Methods In the first part of the experiments we compare our methods mostly

against classic (invariance-agnostic) versions of the optimal transport problem, in

addition to the Iterative Closest Points (ICP) method [40, 26]. For the word translation

task, we follow Conneau et al. [42] and consider a simple but strong baseline consisting

of solving a Procrustes problem directly using the available cross-lingual embedding

pairs (we refer to this method simply as Procrustes), emphasizing that this baseline

is not fully unsupervised. In addition, we compare against the fully-unsupervised

methods of Zhang et al. [182] (Adv), Artetxe et al. [15] (Self-Learn), Conneau et al.

[42] (Muse) and Grave et al. [76] (Wasserstein). The code for the last of these was

not available, so we report results from their paper (which excludes En−It), and omit

runtime. As first proposed by Conneau et al. [42], we use Cross-domain Similarity

Local Scaling (Csls) whenever a nearest-neighbor search is required, which has been

shown to improve upon naive nearest-neighbor retrieval in various works.

4.8.2 Recovery and noise robustness on synthetic datasets

We first test our approach in a controlled setting with known underlying invariance.

We generate a point cloud in R2 or R3 (the source), and then apply a transformation

P sampled randomly from one of the families ℱ𝑝 to generate a target point cloud. The

goal is thus to recover the true correspondences between source and target points. We

generate a discrete matching 𝜓 from a coupling Γ as 𝜓(𝑖) = argmax𝑗 Γ𝑖𝑗 , and compute

its accuracy with respect to the known true point-wise correspondences. Throughout

this section we run all methods with 10 random restarts and keep the best performing

one in terms of the optimization objective (not the accuracy itself, so as to simulate a

truly unsupervised scenario with no known correspondences for validation).

An instance of this dataset and the corresponding solutions found using the classic
12We discuss the difference in hardness of these two benchmark datasets in Section 4.8.4.
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Figure 4-3: Optimal couplings for the synthetic point cloud dataset with underlying
orthogonal (ℱ∞) invariance; green (red) edges denote correct (incorrect) matchings.
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Figure 4-4: Optimal couplings for the synthetic point cloud dataset with underlying
orthogonal (ℱ∞) invariance; green (red) edges denote correct (incorrect) matchings.

and invariant versions of OT are shown in Figure 4-3. As expected, when the true latent

transformation is orthogonal, endowing OT with ℓ∞ invariance allows it to recover

the correct matching between the point clouds, while the classic (invariance-agnostic)

formulation does not, greedily matching based on proximity instead. We observed

that most of the proposed optimization approaches to solve the invariant OT problem

perform almost indistinguishably well in these simple datasets where perfect recovery

is possible. Surprisingly, even the unconstrained version of the P-descent method was

able to recover the correct mapping and matchings in all of these settings. We show

another instance in Figure 4-4. Additional results can be found in Appendix A.
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in recovering P. The plots show mean values and one s.d. error bars over 5 repetitions.

Few real applications, however, would involve such a simple scenario with perfect

cross-domains correspondence. Instead, the two collections of interest are likely to

exhibit some level of noise. Thus, even if the true latent invariance is of the prescribed

class (Schatten-bounded norm in our assumptions), it might be hard to find it because

no transformation would yield perfect correspondence. To investigate the robustness

of our methods with respect to noise, we simulate noisy correspondences as follows.

As before, we generate point clouds with two types of invariances (ℱ2 and ℱ∞), but
now add a Gaussian noise term with variance 𝜎 to the target points.

In the first instance, we consider a dataset with a latent orthogonal transformation,

and compare all of our optimization methods and the following baselines: iterative

closest points (Icp), classic OT (2.5), the entropy-regularized formulation OT𝜀 (i.e.,

Problem (2.11)) solved via the Sinkhorn algorithm, and an Oracle which solves

a entropy-regularized problem without the transformation applied, i.e. only adding

noise. Figure 4-5 shows the matching accuracy (mean and one standard deviation

over 5 repetitions), where again each method is run with 10 random restarts. Notably,

the Gromov-Wasserstein method performs very well for small noise levels, while

the Invariant OT varieties solved with block-coordinate descent and P-descent are
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Figure 4-6: Robustness with respect to noise when matching under latent Schatten
invariances of two types. Top: matching accuracy for the computed coupling Γ̂.
Bottom: error in recovering P. The plots show mean values and one s.d. error bars
over 5 repetitions.

consistently among the best for all levels of noise. Note also that (unsurprisingly) the

invariance-agnostic entropic OT and (somewhat surprisingly) Icp are by far the two

worst performing methods in this dataset.

Next, we investigate the effect of misspecification of the invariance class ℱ𝑝, again

at different levels of noise.13 We now compare two versions of the invariant OT

objective with different invariances (the ℓ2 and ℓ∞ Schatten norm cases, i.e., invariance

to Frobenius and orthogonal transformations, respectively), in addition to the same

baselines as before. As before, Figure 4-6 (top) shows the matching accuracy (mean

and one standard deviation over 5 repetitions). As expected, ℓ∞-OT is better than

ℓ2-OT at recovering the correspondences when the true transformation is orthogonal,

13This time, we use a slightly different noise scheme, where now the noise is added per entry, i.e.,
using �̂�

(𝑖)
𝑗 ← �̂�

(𝑖)
𝑗 +𝑁(0, 𝜎). This leads to lower relative distortion for the same level of 𝜎 compared

to the multivariate Gaussian noise approached used before.
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and vice versa; and there is a loss of accuracy caused by the estimation of P in the ℓ2

case, as shown by the gap between our methods and Oracle OT. But surprisingly,

both invariance methods outperform the oracle in the ℓ∞ case, which we attribute

to the added freedom of choosing P to overcome noise, combined with the ease of

optimizing over ℱ∞ compared to ℱ2. This hypothesis is supported by the overall

higher error in recovering P in the latter case (Fig. 4-6, bottom).

4.8.3 Optimization dynamics

Figure 4-7 shows the best-of-then restarts run for the various optimization approaches

to the invariant OT problem and the entropic Gromov-Wasserstein alternative in the

same bunny point cloud used before, now with noise added at level 𝜎 = 0.1. There

are various interesting phenomena to discuss here. First, it is clear from the couplings

and optimal matches that the amount of noise in this instance makes the alignment

task quite challenging. In terms of optimization dynamics, all methods shown there

exhibit a mostly smooth and monotonous objective drop, which—crucially—correlates

strongly with the matching accuracy (middle column). Since such validation curves

would not be available during training in a truly unsupervised setting, it is important

that the (unsupervised) objective be a good predictor of the metric of interest, since

model selection, random restarting and early stopping would all need to be done on

the former.

Also worth pointing out is the fact that the optimization approaches that treat Γ

as one of the optimization blocks (namely, the block coordinate descent and Γ-descent

methods – rows (B) and (C) in Figure 4-7) they allow for smoothly annealing of the

entropy regularization strength, which leads to smooth and gradual sharpening of the

optimal coupling (second column from the left). For the same reason (high entropy of

Γ* in initial iterates), the difference between regularized and unregularized objectives

(first column) is more pronounced than for all the other methods. On the flip side,

these methods take a far larger number of iterations to reach the same accuracy than

the others (again, a consequence of the entropy annealing scheme, which causes initial

couplings to be too dense for accurate matching inference).
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(A) (Entropic) Gromov-Wasserstein alignment
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(B) Block Coordinate Descent on Γ and P
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(C) Single-block descent on Γ via Projected Gradient Descent on Π(a,b)
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(D) Single-block descent on P via Riemannian conjugate gradient on O(𝑛)
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(E) Single-block descent on P via unconstrained conjugate gradient on R𝑑

Figure 4-7: Training dynamics for the various invariant OT approaches on a simple 3D
shape matching task with underlying ℱ∞ invariance and added noise (𝜎 = 0.1). Shown
here is the best-of-ten restart for each model. The first three panes show objective
values, entropy regularization and matching accuracy; the right-most two show the
optimal coupling represented as pairwise matches and the transportation coupling Γ*.
Vertical red dashed lines indicate entropy decay was frozen at that iteration.
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4.8.4 Unsupervised word translation

As discussed in the introduction to this chapter, unsupervised word translation is an

ideal testbed for optimal transport with invariances. Most recent fully unsupervised

methods cast the problem as feature alignment between sets of word embeddings,

motivated by the observation that these possess similar geometry across languages

[127]. Though their relational structure is similar, the absolute position of these

vectors is irrelevant. Indeed, word embedding algorithms are naturally interpreted as

metric recovery methods [84], making these vectors intrinsically invariant to angle (or

distance) preserving transformations. This observation suggests inducing invariance

to orthogonal transformations, as described in Section 4.5.1.

Most current unsupervised methods circumvent this issue by resorting to ad-hoc

normalization, joint re-embedding, or by estimating a complex mapping between the

two spaces with adversarial training. These methods require careful initialization

and post-mapping refinements, such as mitigating the effect of frequent words on

neighborhoods, and are often hard to tune properly [15].

In our optimal-transport based approaches, the optimal transport coupling Γ*

provides an explicit (soft) matching between source and target samples, which for the

problem of interest can be interpreted as a probabilistic translation: for every pair

of words (𝑤(𝑖)
𝑠𝑟𝑐, 𝑤

(𝑗)
𝑡𝑟𝑔), Γ*𝑖𝑗 provides a likelihood that these two words are translations

of each other. This itself is enough to translate, and we show in the experiments

section that Γ* by itself, without any further post-processing, provides high-quality

translations. This stands in sharp contrast to mapping-based methods, which rely

on nearest-neighbor computation to infer translations, and thus become prone to

hub-word effects which have to be mitigated with heuristic post-processing techniques

such as Inverted Softmax [161] and Cross-Domain Similarity Scaling (Csls) [42]. The

transportation coupling Γ, being normalized by construction, requires no such artifacts.

When solving this task via the Gromov-Wasserstein distance, we rely on the scheme

described in Section 4.7 to scale up to the very large problem size that the vocabularies

in this task imply. We point out that this two-step procedure resembles that of
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Figure 4-8: Training dynamics for the ℓ∞-Invariant-OT approach on the
word translation task. Left to right: objective, change in P and Γ from previous
iteration, and translation accuracy, on a typical En→It run with a 5K vocabulary.

Conneau et al. [42]. Both ultimately produce an orthogonal mapping obtained by

solving a Procrustes problem, but they differ in the way they produce pseudo-matches

to allow for such second-step: while their approach relies on an adversarially-learned

transformation, we use an explicit optimization problem.

Finally, we note that whenever word frequency counts are available, those would

be used for a and b. If they are not, but words are sorted according to frequency

(as they often are in popular off-the-shelf embedding formats), one can estimate

rank-probabilities such as Zipf power laws, which are known to accurately model

multiple languages [141]. In order to provide a fair comparison to previous work,

throughout our experiments we use uniform distributions so as to avoid providing

our method with additional information not available to others.

Optimization details and overall dynamics

Recall that in Section 4.7 we proposed a two-step approach when using Gromov-

Wasserstein for large tasks like this one. Since running Algorithm 6 for the full set of

embeddings is infeasible (due to memory limitations), one must decide what fraction

of the embeddings to use during optimization. In our experiments, we use the largest

possible size allowed by memory constraints, which was found to be 𝐾 = 20, 000 for

the personal computer we used. The other—more interesting—optimization choice

involves the entropy regularization parameter 𝜀. As we have discussed at various points

throughout this thesis, large regularization values lead to denser optimal coupling
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(A) En →Fr, 𝜀 = 5 · 10−4
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(B) En →Fr, 𝜀 = 10−4

0 10 20 30 40 50
Iteration

0

5

10

15

20

25

30

35

40

Ac
cu

ra
cy

 (%
)

3.5

4.0

4.5

5.0

5.5

6.0

6.5

Di
st

an
ce

 (O
pt

. O
bj

ec
tiv

e)

1e 3

(C) En →Ru, 𝜀 = 10−4

Figure 4-9: Training dynamics for the Gromov-Wasserstein approach on the
word translation task. The algorithm provably makes progress in each iteration,
and the objective (red dashed line) closely follows the metric of interest (translation
accuracy, not available during training). More related languages (e.g., En →Fr)
lead to faster optimization, while more distant pairs yield slower learning curves (En
→Ru). These results are obtained when running on 15K word vocabularies.

Γ*, while less regularization leads to sparser solutions, at the cost of a harder (more

non-convex) optimization problem.

Figure 4-8 shows a typical run of our algorithm for ℓ∞-OT, exhibiting a common

pattern: little progress at the beginning (during which P is being aggressively adjusted),

followed by a steep decline in the objective (during which both P and Γ are increasingly

modified in each step), after which convergence is reached. Note how the value of

the optimization objective (left) and the accuracy in the translation task (right) are

strongly correlated, particularly when compared against adversarial networks [42].

As mentioned previously, this is crucial because accuracy (shown here for expository

purposes) is not available during the actual task, so model selection and early stopping

are made based solely on the unsupervised objective. In addition, note that except for

a small adjustment at the end of training, our method does not risk degradation by

over-training, as is often the case for adversarial training alternatives.

The training dynamics for the Gromov-Wasserstein approach are similar, although

convergence is faster at the beginning of training (Figure 4-9). As expected, larger

values of 𝜀 lead to smoother improvements with faster runtime-per-iteration, at a price

of some drop in performance. In addition, we found that computing GW distances

between closer languages (such as En and Fr) leads to faster convergence than for more
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En-Es En-Fr En-De En-It En-Ru

Supervision Time → ← → ← → ← → ← → ←

Procrustes 5K words 3 77.6 77.2 74.9 75.9 68.4 67.7 73.9 73.8 47.2 58.2
Procrustes + Csls 5K words 3 81.2 82.3 81.2 82.2 73.6 71.9 76.3 75.5 51.7 63.7

Muse None 643 75.7 79.7 77.8 71.2 70.1 66.4 72.4 71.2 37.1 48.1
Muse + Refine None 957 81.7 83.3 82.3 82.1 74.0 72.2 77.4 76.1 44.0 59.1

Wasserstein + Csls None – 82.8 84.1 82.6 82.9 75.4 73.3 – – 43.7 59.1
Self-Learn + Csls None 476 82.3 84.7 82.3 83.6 75.1 74.3 79.2 79.8 48.9 65.9

ℓ∞-InvarOt + Csls None 70 81.3 81.8 82.9 81.6 73.8 71.1 77.7 77.7 41.7 55.4
Gromov-Wass (𝜀 = 10−4) None 70 78.3 79.5 79.3 78.3 69.6 66.9 75.3 74.1 26.1 35.4
Gromov-Wass (𝜀 = 10−5) None 37 81.7 80.4 81.3 78.9 71.9 72.8 78.9 75.2 45.1 43.7

Table 4.1: Performance (P@1) of unsupervised and minimally-supervised methods
on the Muse translation task [42]. The time column shows the average runtime in
minutes of an instance (one language pair) of the method in this task on the same
(CPU) machine. We report results for our methods without relying on the iterative
refinement step of Conneau et al. [42], so it is more appropriately compared to their
Muse + Csls version.

distant ones (such as En and Ru, in Fig. 4-9). As with the Invariant OT approach,

GW exhibits three desirable optimization properties that set both of these methods

apart from other unsupervised alignment approaches, particularly adversarial-training

ones: (i) the objective decreases monotonically (ii) its value closely follows the true

metric of interest (translation, which naturally is not available during training) and (iii)

there is no risk of degradation due to overtraining, as is the case for adversarial-based

methods trained with stochastic gradient descent [42].

Quantitative results

We report the results on the dataset of Conneau et al. [42] in Table 4.1. The strikingly

high performance of all methods on this task belies the hardness of the general problem

of unsupervised cross-lingual alignment. Indeed, as pointed out by Artetxe et al. [15],

the fastText embeddings provided in this task are trained on very large and highly

comparable—across languages—corpora (Wikipedia), and focuses on closely related

pairs of languages. Nevertheless, we carry out experiments here to have a broad

evaluation of our approach in both easier and harder settings. The results in Table 4.1

show that our optimal transport-based methods perform on par with state-of-the-art

approaches tailored to this task, at a fraction of the computational cost.
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Figure 4-10: Word embeddings trained on non-comparable corpora can lead to uneven
distributions of pairwise distances as shown here for the En-Fi pair of [51] (left-most
two plots). Normalizing the cost matrices leads to better optimization and improved
performance (right-most plots).

En-It En-De En-Fi En-Es

P@1 Time P@1 Time P@1 Time P@1 Time

[182]† 0 46.6 0 46.0 0.07 44.9 0.07 43.0
Muse [42]† 45.40 46.1 47.27 45.4 1.62 44.4 36.20 45.3
Self-Learn [15]† 48.53 8.9 48.47 7.3 33.50 12.9 37.60 9.1

G-W 44.4 35.2 37.83 36.7 6.8 15.6 12.5 18.4
G-W + Normalize 49.21 36 46.5 33.2 18.3 42.1 37.60 38.2

Table 4.2: Results of unsupervised methods on the dataset of Dinu et al. [51] with
runtimes in minutes. Those marked with † are from [15]. Runtimes are not directly
comparable since they rely on GPU computation but here we do not.

Next, we present results on the more challenging dataset of [51] in Table 4.2. Part

of what makes this dataset hard is the wide discrepancy between word distance across

languages, which translates into uneven distance matrices (Figure 4-10), and in turn

leads to poor results for G-W. To account for this, previous work has relied on an

initial whitening step on the embeddings. In our case, it suffices to normalize the

pairwise similarity matrices to the same range to obtain substantially better results.

While we have observed that careful choice of the regularization parameter 𝜀 can

obviate the need for this step, we opt for the normalization approach since it allows

us to optimize without having to tune 𝜀. We compare our method (with and without

normalization) against alternative approaches in Table 4.2. Note that we report the

runtimes of Artetxe et al. [15] as-is, which are obtained by running on a Titan XP

GPU, while our runtimes are, as before, obtained purely by CPU computation.
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4.8.5 The Gromov-Wasserstein cross-language distance

As mentioned earlier, Theorem 4.3.2 implies that the optimal value of the Gromov-

Wasserstein problem can be legitimately interpreted as a distance between languages,

or more explicitly, between their word embedding spaces. This distributional notion

of distance is completely determined by pair-wise geometric relations between these

vectors. In Figure 4-11 we show the values GW(C𝑠,C𝑡, a,b) computed on the fast-

Text word embeddings of Conneau et al. [42] corresponding to the most frequent

2000 words in each language.
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Figure 4-11: Pairwise language Gromov-
Wasserstein distances obtained as the min-
imal transportation cost (4.2) between word
embedding similarity matrices. Values scaled
by 102 for easy visualization.

Overall, these distances conform to

our intuitions: the cluster of romance

languages exhibits some of the shortest

distances, while classical Chinese (Zh)

has the overall largest discrepancy with

all other languages. But somewhat sur-

prisingly, Russian is relatively close to

the romance languages in this metric.

We conjecture that this could be due

to Russian’s rich morphology (a trait

shared by romance languages but not

English). Furthermore, both Russian

and Spanish are pro-drop languages

[86] and share syntactic phenomena,

such as dative subjects [132, 124] and

differential object marking [31], which

might explain why Es is closest to Ru overall.

On the other hand, English appears remarkably isolated from all languages, equally

distant from its Germanic (De) and Romance (Fr) cousins. Indeed, other aspects of

the data (such as corpus size) might be underlying these observations.
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4.9 Discussion and Extensions

In this chapter we introduced a general formulation of optimal transport that accounts

for global invariances in the underlying feature spaces, unifying various existing

approaches to deal with such invariances. The problem allows for very efficient

algorithms in two cases often found in practice. The experiments show that this

framework provides a fast, principled and robust alternative to state-of-the-art methods

for unsupervised word translation, delivering comparable performance. These results

suggest that OT with invariances is a viable alternative to adversarial methods that

infer correspondences from complex, often underdetermined, neural network maps.

On the other hand, we showed that the Gromov-Wasserstein distance is well-

suited for finding correspondences across unaligned spaces, as it performs a relational

comparison of vectors across domains rather than comparing the vectors directly. In

this case too, the resulting optimization objective is concise and can be optimized

efficiently. The experimental results show that the resulting alignment framework is

fast, stable and robust, yielding near state-of-the-art performance at a computational

cost that is orders of magnitude lower than that of alternative fully unsupervised

methods.

A natural question is which of the two approaches, namely optimal transport

with invariances or Gromov-Wasserstein alignment, should be preferred for any given

application. The answer depends on both the nature of the invariance sets and the

size of the problem. As for the former, the Gromov-Wasserstein approach provides a

very flexible framework with minimal assumptions on the type of invariances faced.

As long as the two embedding spaces exhibit a sufficiently similar geometry (and

that this geometry be faithfully captured by the metrics defined on them), the GW-

alignment is likely to be successful. The invariance OT approach, on the other hand,

requires specifying an invariance function class, and as expected and confirmed in our

experiments, choosing the wrong class often—though, surprisingly, not always— leads

to poor results.

The second aspect to consider when deciding between these two approaches is of a
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computational nature. An obvious limitation of the Gromov-Wasserstein approach

compared to the general invariance approach is its computational complexity, both in

terms of memory and time. The word embedding task, although certainly large, is

far from atypical in machine learning applications, and without a doubt smaller that

many problems in computer vision. Even in this setting, we were forced to resort to

an ad-hoc two-step scheme to scale up the Gromov-Wasserstein matching approach.

Stochastic optimization would be an obvious approach to avoid in this secondary

step. Naturally, stochastic variants of the entropy regularized OT problem would also

benefit the invariant OT approaches.

In summary, if the problem of interest is small or there is no prior information or

reasonable guess on the type of invariance faced, the Gromov-Wasserstein approach

is an obvious choice. On the other hand, if the problem is large or the class of

invariance—not the specific instance of course— is known, then the more constrained

and scalable approach offered by the optimal transport generalization proposed here

is a sensible choice.
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Chapter 5

Optimal Transport over

Hyperbolic Riemannian Manifolds

This chapter is based on Alvarez-Melis, Mroueh, and Jaakkola [11].

In this chapter, we extend the framework of unsupervised embedding alignment

presented in the previous chapter to the setting of hyperbolic embeddings. The

motivation for this extension is the problem of unsupervised alignment of hierarchical

data such as ontologies or lexical databases. This is a problem that appears across

areas, from natural language processing to bioinformatics, and is typically solved by

appeal to outside knowledge bases and label-textual similarity.

Optimal transport allows us to approach this problem from a purely geometric

perspective: given only a vector-space representation of the items in the two hierarchies,

we seek to infer correspondences across them. In keeping with the premise of this

thesis, we propose to use optimal transport to infer the correspondences, as we did

in the previous chapter. However, this setting differs in the fact that the data itself

has structure (namely, hierarchical structure). But here, as opposed to Chapter 3, we

model the structure of the data through the representation space itself, rather than

through the cost function as we did in that case. For this, we build upon a recent

work that shows the advantage of embedding hierarchical structures in hyperbolic

(rather than Euclidean) spaces [134, 67, 49]. Thus, we seek to combine the approach
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Figure 5-1: Schematic representation of the branch permutability phenomenon in
hyperbolic embeddings. As we will see later in this chapter, besides rotational
invariance hyperbolic embeddings can exhibit and additional (non-linear) type of
invariance: while the geometry of individual branches of the hierarchy is approximately
preserved across embedding instances, their relative positions with respect to one
another might not. In Section 5.4 we propose a framework to overcome this invariance,
which at a high-level reorders the branches of one of the embedding spaces (𝒴 in this
case) in such a way that allows for direct comparison with the other space (𝒳 ).

of Chapter 4 with this recent trend in machine learning, by extending the former to

non-Euclidean settings, and using them to find correspondences between datasets by

relying solely on their geometric structure, as captured by their hyperbolic-embedded

representations. We will see that in this setting too there are global invariances that

need to be accounted for. However, we will see that they are much more complex

that the Schatten-norm invariances tackled before. Thus, in this Chapter we are

simultaneously facing explicit structure in the data and implicit structure induced

by invariance in the representations, interweaving ideas presented in all the previous

chapters.

Our focus in this Chapter—and in fact throughout this thesis— is on the matching

aspect of the problem, so we assume the embeddings of the hierarchies are already

provided. After introducing the necessary background on hyperbolic embeddings in

Section 5.2, we begin the analysis with a set of negative results. We show that state-of-

the-art methods for unsupervised (Euclidean) embedding alignment, including many

of those introduced in Chapter 4, perform remarkably poorly when used on hyperbolic

embeddings, even after modifying them to account for this geometry. The cause of this

failure lies in a type of invariance—not exhibited by Euclidean embeddings—which

we refer to as branch permutability. At a high level, this phenomenon is characterized
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by a lack of consistent ordering of branches in the representations of a dataset across

different runs of the embedding algorithm (Fig 5-1), and is akin to the node order

invariance in trees.

In response to this challenge, we further generalize our approach by learning a

flexible nonlinear registration function between the spaces with a hyperbolic neural

network [68]. This nonlinear map is complex enough to register one of the hyperbolic

spaces (Fig 5-3b), and is learned by minimizing an optimal transport problem over

hyperbolic space, which provides both a gradient signal for training and a pointwise

(soft) matching between the embedded entities. The resulting method is capable of

aligning embeddings in spite of severe branch permutability, which we demonstrate

with applications in WordNet translation and biological ontology matching.

5.1 Motivation and Applications

Hierarchical structures are among the most common types of structured data in

various domains, such as natural language processing and bioinformatics. For example,

structured lexical databases like WordNet [128] are widely used in computational

linguistics as an additional resource in various downstream tasks [130, 157, 30]. On

the other hand, ontologies are often used to store and organize relational data.

Building such datasets is expensive and requires expert knowledge, so there is

great interest in methods to merge, extend and extrapolate across these structures.

A fundamental ingredient in all of these tasks is matching1 different datasets, i.e.,

finding correspondences between their entities. For example, the problem of ontology

alignment is an active area of research, with important implications for integrating

heterogeneous resources, across domains or languages [165]. We refer the reader to

Euzenat and Shvaiko [58] for a thorough survey on the state of this problem. On the

other hand, there is a long line of work focusing on automatic WordNet construction

that seeks to leverage existing large WordNets (usually, English) to automatically

build WordNets in other low-resource languages [110, 154, 143, 98].

1Throughout this work, we interchangeably use matching and alignment to refer to this task.
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Euzenat and Shvaiko [58] recognize three dimensions for similarity in ontology

matching: semantic, syntactic and external. A similar argument can be made for

other types of hierarchical structures. Most current methods for aligning such types

of data rely on a combination of these three, i.e., in addition to the relations between

entities they exploit lexical similarity and external knowledge. For example, automatic

WordNet construction methods often rely on access to machine translation systems

[143], and state-of-the-art ontology matching systems commonly assume access to a

large external knowledge base. Unsurprisingly, these methods perform poorly when

no such additional resources are available [158]. Thus, effective fully-unsupervised

alignment of hierarchical datasets remains largely an open problem.

5.2 Preliminaries

A fundamental question when dealing with any type of symbolic data is how to

represent it. As the advent of representation learning has proven, finding the right

feature representation is as—and often more— important than the algorithm used

on it. Naturally, the goal of such representations is to capture relevant properties

of the data. For our problem, this is particularly important. Since our goal is to

find correspondences between datasets based purely on their relational structure, it is

crucial that the representation capture the semantics of these relations as precisely as

possible.

Traditional representation learning methods embed symbolic objects into low-

dimensional Euclidean spaces. These approaches have proven very successful for

embedding large-scale co-occurrence statistics, like linguistic corpora for word embed-

dings [126, 138]. However, recent work has shown that data for which semantics are

given in the form of hierarchical structures is best represented in hyperbolic spaces, i.e.,

Riemannian manifolds with negative curvature [39, 135, 67]. Among the arguments in

favor of these spaces is the fact that any tree can be embedded into finite hyperbolic

spaces with arbitrary precision [77]. This stands in stark contrast with Euclidean

spaces, for which the dependence on dimension grows exponentially. In practice, this
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means that very low-dimensional hyperbolic embeddings often perform on-par or above

their high-dimensional Euclidean counterparts in various downstream tasks [135, 67,

170]. This too is an appealing argument in our application, as we are interested in

matching very large datasets, making computational efficiency crucial.

Working with hyperbolic geometry requires a model to represent it and operate on

it. Recent computational approaches to hyperbolic embeddings have mostly focused

on the Poincaré Disk (or, in higher dimensions, Ball) model. This model is defined by

the manifold D𝑑 = {𝑥 ∈ R𝑛 | ‖𝑥‖ < 1}, equipped with the metric tensor 𝑔D
𝑥 = 𝜆2𝑥𝑔

𝐸,

where 𝜆𝑥 := 1/(1 − ‖𝑥‖22) is the conformal factor and 𝑔𝐸 is the Euclidean metric

tensor. With this, (D𝑑, 𝑔D
𝑥 ) has a Riemannian manifold structure, with the induced

Riemannian distance given by:

𝑑D(u,v) = arcosh

(︃
1 + 2

‖u− v‖2
(1− ‖u‖2)(1− ‖v‖2)

)︃
. (5.1)

From this, the norm on the Poincaré Ball can be derived as

‖u‖D = 𝑑D(0,u) = 2 arctanh(‖u‖). (5.2)

It can be seen from this expression that the magnitude of points in the Poincaré Ball

tends to infinity towards its boundary. This phenomenon intuitively illustrates the

tree-like structure of hyperbolic space: starting from the origin, the space becomes

increasingly—in fact, exponentially more—densely packed towards the boundaries,

akin to how the width of a tree grows exponentially with its depth.

Hyperbolic embedding methods find representations in the Poincaré Ball by con-

strained optimization (i.e., by imposing ‖x‖ < 1) of a loss function that is often

problem-dependent. For datasets in the form of entailment relations 𝒟 = {(𝑢, 𝑣)},
where (𝑢, 𝑣) ∈ 𝒟 means that 𝑢 is a subconcept of 𝑣, Nickel and Kiela [135] propose to

minimize the following soft-ranking loss:

ℒ(Θ) =
∑︁

(𝑢,𝑣)∈𝒟
log

𝑒−𝑑(u,v)∑︀
v′∈𝒩 (𝑢) 𝑒

−𝑑(u,v′)
, (5.3)
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where Θ = {u} are the embeddings and 𝒩 (𝑢) = {𝑣 | (𝑢, 𝑣) ̸∈ 𝒟} a set of negative

examples for 𝑢.

Transformations in the Poincaré Ball will play a prominent role in the development

of our approach in Section 5.4, so we discuss them briefly here. Since the Poincaré Ball

is bounded, any meaningful operation on it must map D𝑑 onto itself. Furthermore, for

registration we are primarily interested in isometric transformations on the disk, i.e.,

we seek analogues of Euclidean vector translation, rotation, and reflection. In this

model, translations are given by Möbius addition, defined as

u⊕ v ,
(1 + 2⟨u,v⟩+ ‖v‖22)u+ (1− ‖u‖22)v

1 + 2⟨u,v⟩+ ‖u‖22‖v‖22
. (5.4)

This definition conforms to our intuition of translation, e.g., if the origin of the disk

is translated to v, then x is translated to v ⊕ x. Note that this addition is neither

commutative nor associative. More generally, it can be shown that all isometries in

the Poincaré Ball have the form 𝑇 (x) = P(v ⊕ x), where v ∈ D𝑑 and P ∈ SO(𝑑), i.e.,

it is an orientation-preserving isometry in R𝑑.

ℳ
Tpℳ

p

tangent space to manifold
logp : ℳ ↦ Tpℳ

expp : Tpℳ ↦ ℳ
Figure 5-2: Visualization of exponential and
logarithmic maps on a Riemannian manifold.

Two other fundamental concepts

in Riemannian geometry are the loga-

rithmic logp(·) and exponential expp(·)
maps on a Riemannian manifold ℳ.

These are operators that map between

the manifold and its tangent space

𝑇pℳ at a given point p. For the

Poincaré Ball, these maps can be suc-

cinctly expressed in terms of the oper-

ations defined above as follows:

expp(u) = p⊕
(︁
tanh(1

2
𝜆p‖u‖) u

‖u‖

)︁
, logp(v) =

2
𝜆p

arctanh
(︀
‖(−p)⊕ v‖

)︀ (−p)⊕v
‖(−p)⊕v‖ .

While this is far from a complete introduction to hyperbolic geometry, the concepts

introduced so far suffice for the purposes of this thesis.
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5.3 Wasserstein Matching of Hyperbolic Spaces

In Chapter 4 we studied in detail how optimal transport distances can be used to

find correspondences between two embedding spaces in a fully unsupervised manner.

However, all the methods we mentioned in that chapter have been applied exclusively

to Euclidean settings. One might be hopeful that naive application of those approaches

on hyperbolic embeddings without further modifications might simply work, but—

unsurprisingly— it does not (see Table 5.4). Indeed, ignoring the special geometry of

these spaces leads to poor alignment. Thus, we now investigate how to adapt such a

framework to non-Euclidean settings.

The first fundamental question towards this goal that one should ask is whether op-

timal transport extends to more general Riemannian manifolds (i.e., beyond Euclidean

space). The answer is mostly positive. Again, an in-depth treatment of this question

falls outside the scope of this thesis, but we appeal to the review of guarantees for

OT on Riemannian Manifolds presented in Chapter 2 (§2.6.2). We recall that for

hyperbolic spaces, under mild regularity assumptions, it can be shown that: (i) OT is

well-defined [173], (ii) its solution is guaranteed to exist, be unique and be induced

by a transport map [123]; and (iii) this map is not guaranteed to be smooth for the

usual cost 𝑑D(𝑥, 𝑦)
2, but it is for variations of it (e.g., − cosh ∘𝑑D) [113]. This set of

theoretical results support the use of Wasserstein distances for finding correspondences

in the hyperbolic setting of interest. Furthermore, Theorem 2.6.2 provides various

Riemannian cost functions with strong theoretical foundations and potential for better

empirical performance.

The second questions towards generalizing Problem (4.6) to hyperbolic spaces

that should be resolved involves the transformation 𝑓 ∈ ℱ . First, we note that

using orthogonal matrices as in the Euclidean case is still valid because, as discussed

in Section 5.2, these map the unit disk into itself. Therefore, we can now solve

a generalized (hyperbolic) version of the Orthogonal Procrustes problem as before.

However, this approach performs surprisingly bad in practice too (see results for

HyperOT+Orthogonal P in Table 5.4).
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To understand the cause of this surprising failure, we recall that orthogonality was

a natural choice of invariance for embedding spaces that we assumed might differ by a

rigid transformation, but were otherwise compatible. This was a natural assumption

for shapes and word vector representations generated with popular word embedding

algorithms. However, Poincaré embeddings exhibit another, more complex, type of

invariance, which to the best of our knowledge has not been reported before. It is

a branch permutability invariance, whereby the relative positions of branches in the

hierarchy might change abruptly across different runs of the embedding algorithm,

even for the exact same data and hyperparameters.

This phenomenon is shown for a simple hierarchy embedded in the Poincaré Disk in

the first row of Figure 5-3. The two embedded spaces, 𝒳 and 𝒴 , which were obtained

with the same algorithm on the same data with different random initializations, show

overall similar branch structure. For example, the branches for the ruminant and

canine families (shown in green and blue in the plot) have almost identical shape.

However, the reader will readily notice that the space 𝒴 is not just simply a rotation

of 𝒳 . Instead, it is clear that the ordering of the branches is different in these two

embeddings: while the two aforementioned branches are continuous in space 𝒳 , there

are other branches in between them on both directions in space 𝒴 .

Naturally, actual discrete trees are invariant to node ordering, but a priori it is not

obvious why this property would be inherited by the embedded space generated with

optimization objective (5.3), where non-ancestrally-related nodes do indeed interact

(as negative pairs) in the objective. We conjecture that the cause of this invariance is

the use of negative sampling for normalization in that loss function, which has the

effect of putting emphasis on preserving distance between entities that are ancestrally

related in the hierarchy, at the cost of down-weighting distances between unrelated

entities. A formal explanation of this phenomenon is left for future work. Here,

instead, we develop a framework to account for and correct these invariances while

simultaneously aligning the two embeddings.
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Figure 5-3: Overcoming branch invariance on a simple dataset. The two embeddings 𝒳 ,
𝒴 were produced by the method of Nickel and Kiela [134] on the same simple hierarchy,
using the same hyperparameters but different random seeds. After registration by the
mapping 𝑓𝜃 learned by our method, the transformed embedding space 𝑓𝜃(𝒴) closely
resembles the target space 𝒳 , facilitating correspondence estimation. The density
plots in the second row show that 𝑓𝜃 is highly nonlinear and approximately radial.
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5.4 A Deep Invariant Correspondence Approach

The failure of the baseline Euclidean alignment methods (and their hyperbolic versions)

discussed in the previous section, combined with the underlying branch permutability

invariance responsible for it, make it clear that the space of registration transformations

ℱ in Problem (4.6) has to be generalized not only beyond orthogonality but beyond

linearity too. Ideally we would want to search for 𝑓 among all continuous mappings

between 𝒴 and 𝒳 , i.e, letting ℱ = {𝑓 : 𝒴 → 𝒳 | 𝑓 ∈ 𝒞(𝒴)}. To make this search

computationally tractable, we can instead approximate this function class with deep

neural networks 𝑓𝜃 parametrized by 𝜃 ∈ Θ.

While an alternating minimization approach is still possible, solving a minimization

for 𝜃 to completion in each iteration is undesirable. Instead, we can reverse the order

of optimization and rewrite our objective as

min
𝑓𝜃∈ℱ

min
𝛾∈Π(𝛼,𝛽)

∫︁
𝒳×𝒳

𝑑(𝑥, 𝑓(𝑦))𝑑𝛾(𝑥, 𝑓(𝑦)) = min
𝑓𝜃∈ℱ

W𝜀(𝛼, 𝑓𝜃♯𝛽). (5.5)

Since W𝜀(𝛼, 𝑓𝜃♯𝛽) is differentiable with respect to 𝜃, we can use gradient-descent based

methods to optimize it.

Here again, as we did in Chapter 4 for the euclidean version of this problem, we

use the “normalized” Sinkhorn Divergence (2.20) instead, which we show here again

for convenience:

SD𝜀(𝛼, 𝛽) ,W𝜀(𝛼, 𝛽)− 1
2

(︀
W𝜀(𝛼, 𝛼) +W𝜀(𝛽, 𝛽)

)︀
.

Thus, replacing this loss in Problem (5.5), and taking 𝒳 = 𝒴 = D𝑑 to be the hyperbolic

space of dimension 𝑑, we arrive at the final version of our optimization problem:

min
𝜃:𝑓𝜃[D𝑑]⊆D𝑑

SD𝜀(𝛼, 𝑓#
𝜃 𝛽), (5.6)

where we recall that 𝑓𝜃[·] denotes the image of a set under 𝑓𝜃.

The last remaining piece of the puzzle is that we need to construct a class of neural

networks that parametrizes ℱ := {𝑓𝜃 | 𝑓𝜃[D𝑑] ⊆ D𝑑}, i.e., functions that map D𝑑 onto
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itself. In recent work, Ganea et al. [67] propose a class of hyperbolic neural networks

that do exactly this. As they point out, the basic operations in hyperbolic space

that we introduced in §5.2 suffice to define analogues of various differentiable building

blocks of traditional neural networks. For example, a hyperbolic linear layer can be

defined as

𝑓HypLin(x;W,b) , (W ⊗ x)⊕ b = exp0(W log0(x))⊕ b.

Analogously, a layer applying a nonlinearity 𝜎(·) in the hyperbolic sense can be defined

as 𝜎D(x) , exp0(𝜎 log0(x)). Here, we also consider Möbius Transformation layers,

𝑓Möbius(x) = P(v ⊕ x), with P ∈ SO(𝑑) and v ∈ D𝑑.

With these building blocks, we can parametrize highly nonlinear functions 𝑓𝜃 :

D𝑛 → D𝑛 as a sequence of such hyperbolic layers, e.g., h(𝑖) = 𝜎D(W
(𝑖) ⊗ h(𝑖−1) ⊕ b(𝑖))

for the hyperlinear layers, and h(𝑖) = 𝜎D(P(v⊕x)) for our Möbius layers. Note that for

the hyperbolic linear layer—but crucially, not for the Möbius layer— the intermediate

hidden states h(𝑖) need not live in the same dimensional space as the input and output,

i.e., using rectangular weight matrices W we can map intermediate states to Poincaré

balls of different dimensionality.

5.4.1 Optimization

Evaluation of the loss function (5.6) is itself an optimization problem, i.e., it requires

solving regularized optimal transport. We back-propagate through this objective [71],

using the geomloss toolbox for efficiency. For the outer-level optimization, we rely

on Riemannian gradient descent [181, 177]. We found that the adaptive methods

of Bécigneul and Ganea [20] worked best, particularly Radam. It is worth noting

that for the HyperLinear layers only the bias term is constrained (on the Poincaré

Ball), while for our Möbius layers the weight matrix is constrained too (in the Stiefel

manifold), so in this case we optimize over the product of the two manifolds. Additional

details on optimization are provided in the experimental section (§5.5.2).
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5.4.2 Avoiding poor local minima

It is easy to see that the loss function (5.6) is highly non-convex with respect to 𝜃, a

consequence of both the objective itself and the nature of hyperbolic neural networks

[67]. As a result, initialization is likely to play a crucial role in solving this problem,

since it is very hard to overcome a poor initial local minimum. In our experiments,

we observe that even layer-wise random initialization of weights and biases proves

futile. As a solution, we propose three pre-training initialization schemes, that roughly

ensure (in different ways) that 𝑓 does not initially “collapse” the space 𝒴 :

∙ CrossMap. Initialize 𝑓𝜃 to approximately match the target points to the

source points in a random permuted order: min𝜃

∑︀𝑛
𝑖=1 𝑑D(x𝜎(𝑖), 𝑓𝜃(y𝑖)) for a

some permutation 𝜎(𝑖).

∙ Identity. Initialize 𝑓𝜃 to approximate the identity: min𝜃

∑︀𝑛
𝑖=1 𝑑D(y𝑖, 𝑓𝜃(y𝑖))

∙ Procrustes [35]. Initialize 𝑓𝜃 to be approximately end-to-end orthogonal:

min𝜃

∑︀𝑛
𝑖=1 𝑑D(𝑓(y𝑖),Py𝑖), where P = argminP∈O(𝑛) ‖X−PY‖22.

The intuition behind these three schemes is as follows. All of them seek an initial

transformation that approximately matches a set of reference points, with the choice

of reference being different for each of them. The first one takes as reference a random

permutation of the source points, which considering the final goal is indeed to find

a mapping between these two collections (albeit with potentially different pair-wise

correspondences), is a sensible first approach. The second scheme instead uses the

same collection y as reference, so the mapping that minimizes this discrepancy is

the identity. Finally, the third of these schemes, inspired by work by Bunne et al.

[35], seeks an initial transformation that as close as possible to the solution of the

orthogonal Procrustes problem between the two collections.

Finally, we again (as in Chapter 4) use an annealing scheme on the entropy-

regularization parameter 𝜀. Starting from an aggressive regularization (large 𝜀0), we

gradually decrease it with a fixed decay rate 𝜀𝑡 = 𝜉 · 𝜀𝑡−1. In all our experiments we

use 𝜉 = 0.99.
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5.5 Experiments

5.5.1 Datasets and methods

Datasets

For our first set of experiments, we extract subsets of WordNet [128] in five languages.

For this, we consider only nouns and compute their transitive closure according

to hypernym relations. Then, for each collection we generate embeddings in the

Poincaré Ball of dimension 10 using the PoincareEmbeddings toolkit2 (the official

implementation of the method of Nickel and Kiela [134]) with default parameters. To

generate the parallel WordNet datasets, we use the nltk interface to WordNet, and

proceed as follows. In the English WordNet, we first filter out all words except nouns,

and generate their transitive closure. For each of the remaining synsets, we query for

lemmas in each of the four other languages (Es, Fr, It, Ca), for which nltk provides

multilingual support in WordNet. These tuples of lemmas form our ground-truth

translations, which are eventually split into a validation set of size 5000, leaving all

the other pairs for test data (approximately 1500 for each language pairs). Note that

the validation is for visualization purposes only, and all model selection is done in a

purely unsupervised way based on the training objective. After the multilingual synset

vocabularies have been extracted, we ensure their transitive closures are complete and

write all the relations in these closures to a file, which will be used as an input to the

PoincareEmbeddings toolkit.

For the second set of experiments, we consider two subtasks of the OAEI 2018

ontology matching challenge [2]: Anatomy, which consists of two ontologies; and

biodiv, consisting of four. Further details about the OAEI datasets can found on the

project’s website.3. Again, we use the PoincareEmbeddings codebase to embed them

in 10-dimensional space.

Additional details on all the datasets are provided in Table 5.1.

2https://github.com/facebookresearch/poincare-embeddings
3http://oaei.ontologymatching.org/2018/
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WordNet Anatomy Biodiv

En Es Fr Ca Human Mouse Flopo Pto Envo Sweet

Entities 8206 8206 8206 8206 3298 2737 360 1456 6461 4365
Relations 47938 47938 47938 47938 18556 7364 472 11283 73881 30101

Embedding Method [135] [135] [135] [135] [135] [135] [135] [135] [135] [135]
Embedding Size 10 10 10 10 10 10 10 10 10 10

Table 5.1: Dataset statistics. En: English, Es: Spanish, Fr: French, Ca: Catalan.
Human: NCI Thesaurus of human anatomy, Mouse: Adult Mouse Anatomy, Flopo: Flora
Phenotype Ontology, Pto: Plant Trait Ontology, Envo: the Environment Ontology, Sweet:
the Semantic Web for Earth and Environment Technology Ontology.

Methods

We first compare ablated versions of our Hyperbolic-OT model on a monolingual

(En) WordNet self-recovery experiment. The configuration details for these ablated

models are shown in Table 5.3, where dashed lines indicate a parameter being the same

as in the Full Model. Then, we compare against three off-the-shelf state-of-the-art

unsupervised word embedding alignment models: Muse [42], Self-Learn [15] and

InvarOt, our approach from Chapter 4, all run with default settings.

5.5.2 Optimization details

Each forward pass of the loss function (5.5) requires solving three regularized OT

problems. As mentioned several times in this thesis, this can be done to completion

with the Sinkhorn-Knopp algorithm in 𝑂(𝑁2 log𝑁𝜀−3) time [3], although practical

implementations often run a fixed number of iterations. We rely on the geomloss4

package for efficient differentiation through Sinkhorn and on the geoopt5 package for

Riemannian optimization.

We run our method for a fixed number of outer iterations (200 in all our experi-

ments), which given the decay strategy on the entropic regularization, ensures that 𝜀

ranges from 1× 101 to 1× 10−2. All experiments were run on a single machine with a

32-core Intel Xeon CPU @3.20 GHz, leveraging GPU computation whenever possible.

The total runtime of our method on these experiments ranges from 1 to 20 minutes.
4https://www.kernel-operations.io/geomloss/
5https://geoopt.readthedocs.io/en/latest/
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Model Metric Cost Pre-
train

𝜀-
anneal

Depth Hid.
dim

Layers 𝜎(·) Opt LR

full Poinc. 𝑑D xMap 10−1�−210 20 HypLin elu radam 10−3

small – – – – 2 10 – – – –
Euclidean Eucl. – – – – – – – adam –

ReLU – – – – – – – relu –
rsgd – – – – – – – – rsgd 10−2

Möbius – – – – – 10 Möbius – – –
cosh Cost – − cosh ∘𝑑D– – – – – – – –

no-pre – – None – – – – – – –

Table 5.2: Ablated model configurations for the monolingual En�En WordNet task.

5.5.3 Evaluation metrics

All the baseline methods return transformed embeddings. Using these, we retrieve

nearest neighbors, and following the literature, we report precision at different levels,

i.e., Prec@𝑘 = 𝛼 if the true match is within the top 𝑘 retrieved candidate matches for

𝛼 percent of the test examples.

5.5.4 Multilingual wordnet alignment

P@1 P@10

Full model 22.2 88.8

small 8.7 38.0

euclidean 3.1 13.0

elu→relu 6.9 37.6

radam→rsgd 14.7 69.5

Möbius layers 11.9 54.3

cost: − cosh ∘𝑑 16.6 70.2

no pretrain 0.1 0.2

Table 5.3: Ablation on En�En
WordNet.

We first investigate the impact on performance

of the various components of our model in a con-

trolled setting, where the correspondences between

the two datasets are perfect and unambiguous. For

this, we embed the same hierarchy (the En part

of our WordNet dataset) twice, using the same

algorithm with the same hyperparameters, but

different random seeds. We then evaluate the

extent to which our method can recover the cor-

respondences. Starting from our Full Model,

we remove and/or replace various components and

evaluate the performance again. The exact config-

uration of the ablated models is shown in Table 5.2.
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Time En-Es En-It En-Fr En-Ca

(min) → ← → ← → ← → ←

Baseline Euclidean Methods

Muse [42] 42 0.60 1.20 0.06 0.45 0.06 2.22 0.09 0.87

Self-Learn [15] 3 0.31 1.40 0.46 0.46 0.55 0.40 0.25 0.34

Invar-OT (Chapter §4) 4 0.25 0.25 2.15 0.60 0.38 2.14 0.51 7.65

Proposed Hyperbolic Methods

Hyper-OT+P ∈ O(𝑑) 13 4.51 5.29 11.2 0.47 5.32 4.68 7.21 5.55

Hyper-OT+NN 𝑓𝜃 21 43.9 56.8 48.0 60.1 54.3 57.5 38.4 57.4

Table 5.4: Results on the multilingual wordnet matching task. The numbers indicate
precision@10 for pair-wise language matching in both directions. All baseline models
use Euclidean metrics to compare embeddings.

The results in Table 5.3 suggest that the most crucial components are the use of the

appropriate Poincaré metric and the pretraining step. The moderate performance

of Möbius is likely due to the constraint on dimensionality that this type of layer

has (§5.4). We next consider a realistic task of inferring correspondences across

the multilingual WordNet embeddings. Naturally, in this case there might not be

perfect correspondences across the entities in different languages. As before, we report

Precision@10 and compare against baseline models in Table 5.4.

5.5.5 Ontology matching
Anatomy Biodiv

H→M M→H F→P P→F S→E S→E

Muse 0.12 0.00 3.23 0.00 0.00 0.00

Self-Learn 0.00 0.00 4.00 0.00 0.01 0.02

Hyp-OT 7.89 4.22 10.12 8.73 3.45 9.66

Table 5.5: Ontology matching results.

Finally, we test our method on the

OAEI tasks. The results (Table 5.5)

show that again our method decidedly

outperforms the two off-the-shelf Eu-

clidean methods, but now the overall

performance of all methods is remarkably lower, which suggests the correspondences

between these domains are more subtle and/or noisy that those in the WordNet task.
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5.6 Discussion and Extensions

The framework for hierarchical structure matching proposed in this chapter admits

various extensions, some of which are immediate. We focused on the particular case of

the Poincaré Ball, but since most of the components of our approach—the optimization,

nonlinear registration, optimal transport—generalize to other Riemannian manifolds,

our framework would too. As long as optimizing over a given manifold is tractable,

our framework would enable computing correspondences across instances of it.

On the other hand, we purposely adopted the challenging setting where no addi-

tional information is assumed. This setting is relevant both for extreme practical cases

and to stress-test the limits of unsupervised learning in this context. However, our

method would likely benefit from incorporating any additional available information as

state-of-the-art methods for ontology matching do. In our framework, this information

could for example be injected intro the transport cost objective.
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Chapter 6

Conclusion

This thesis presents a collection of extensions of the optimal transport toolbox that

account for various types of additional structure that the original formulation of the

problem does not. We showed how this structure arises naturally in various machine

learning applications; how it can be modeled within the framework of optimal transport;

and how the resulting problems lead to better empirical solutions over various other

alternative approaches, including the (structure-oblivious) original formulations. In

the rest of this concluding chapter we discuss extensions and limitations of the methods

proposed in this thesis.

There are many possible extensions of the methods developed here, some of them

immediate, some of them requiring overcoming various challenges. As pointed out

in the discussion of Chapter 3, our approach relied on submodularity because of its

tractability and well-understood properties, which made it a very appealing toolbox

to model structure. However, the framework that was eventually developed is flexible

enough that most of it carries beyond submodularity; any non-linear convex function

that suitably models some structure of interest and has bounded closed gradient

maps would work as a replacement for the role of the soft matching cost function

that the Lovász extension played in the one proposed here. On the other hand, in

Chapter 4 we focused on invariances defined by transformations with bounded Schatten

norm, but, as discussed at the time, any other invariance could be dealt with in a

similar manner with appropriate constrained optimization routines. As for Chapter 5,

143



a natural extension would be to also optimize over the embedding representation

too—i.e., not treat it as an immutable given—to actively encourage them to facilitate

correspondence inference.

A limitation that is common to the three families of methods presented in this thesis

is computational complexity. Of course, a type of no free lunch theorem applies here:

methods that model structure will almost certainly be more costly than those that do

not. In the context of optimal transport, any generalization that adds complexity to

the classic formulation—be it to the cost function, the ground spaces, or the marginal

constraints— is likely to result in more challenging optimization. The experimental

results presented throughout this thesis show that this price is almost always offset by

significant gains in performance on the task of interest. Needless to say, this by no

means implies that there is nothing to do in this regard. This thesis had an emphasis

on the modeling and application sides of the problem, not the computational efficiency

aspects; as a consequence, there is plenty of room for improvement in this area.

Given that solving instances of the usual entropy-regularized optimal transport

problem is at the backbone of all our methods, any improvement in computational

efficiency of the methods to solve this problem would immediately translate into better

efficiency of ours. There is plenty of recent work proposing fast algorithms for OT,

many of them relying on stochastic optimization [70, 1, 166] and sliced approximations

[29, 102, 50, 144, 101], which could be used to speed and scale up our regularized OT

subroutines.

The last extension we discuss here, and undoubtedly the most challenging one,

pertains to the structure modeling itself. When laying out a roadmap on approaches

to injecting structure into the optimal transport problem (§1.3), we mentioned three

generic components of the problem where this could be done: the cost function,

the representation spaces, and the constraints. In Chapters 3 and 4 respectively we

investigated the first two in-depth. The third one remains open.

Modeling structure through the marginal distributions is appealing because it

holds the promise of a more natural—and powerful— formulation of optimal transport

in structured domains. Consider the setting where the objects of interest have explicit
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structure, such as sentences or trees. While the structure of an instance (say, sentence)

can be simulated through the cost objective (e.g., as we do in Chapter 3), without

modifying the marginal distributions to actually be defined over sentences, we will

not be able to fully leverage the OT toolkit (e.g., doing meaningful displacement

interpolation), as the spaces themselves will not distinguish between low-probability

(e.g., ungrammatical sentences) and high probability configurations. Therefore, in

order to fully leverage the toolkit of optimal transport (e.g., barycentric mappings

and interpolation) in a manner that is consistent with the underlying structure, it

will likely be necessary to rely on modeling structure probabilistically through the

marginal distributions instead. In Appendix B we outline some preliminary ideas on

how this problem could be tackled.

Finally, a general parting thought befitting a thesis on an interdisciplinary topic

must be offered. The author, who takes unparalleled delight in ideas that make

unexpected connections between seemingly disparate topics or fields, is optimistic

that fascinating challenges and opportunities for future work at the intersection of

optimization, representation geometry and statistics abound, and will continue to do

so for the foreseeable future. Natural language processing is the perfect playground

on which to tackle such challenges because it is intimately related to all three of

these domains. While certainly not the only application domain for which this is

true, it stands out for the style of play it offers, being a discipline where the power of

computation and the elegance of statistics; the sometimes-contradicting sometimes-

harmonious natures of discrete and continuous optimization; and the beauty and

mysteries of mathematics and human language are all exquisitely intertwined.
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Appendix A

Additional Experimental Results for

Invariant OT
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(A) (Entropic) Gromov-Wasserstein alignment.
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(B) Alternating Minimization on Γ and P
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(C) Single-block descent on Γ via Projected Gradient Descent on Π(a,b)
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Figure A-1: Training dynamics for the various invariant OT approaches on a simple
noiseless 2D moons point cloud dataset with underlying ℱ∞ invariance. Shown here is
the best-of-ten restart for each model. The first three panes show objective values,
entropy regularization and matching accuracy; the right-most two show the optimal
coupling represented as pairwise matches and the transportation coupling Γ*. Vertical
red dashed lines indicate entropy decay was frozen at that iteration.
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(B) Alternating Minimization on Γ and P
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(C) Single-block descent on Γ via Projected Gradient Descent on Π(a,b)
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(D) Single-block descent on P via Riemannian conjugate gradient on O(𝑛)
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(E) Single-block descent on P via unconstrained conjugate gradient on R𝑑

Figure A-2: Training dynamics for the various invariant OT approaches on a simple
noiseless 3D s-shaped point cloud dataset with underlying ℱ∞ invariance. Shown here
is the best-of-ten restart for each model. The first three panes show objective values,
entropy regularization and matching accuracy; the right-most two show the optimal
coupling represented as pairwise matches and the transportation coupling Γ*. Vertical
red dashed lines indicate entropy decay was frozen at that iteration.
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Appendix B

Towards Optimal Transport with

Structured Marginals

For distributions defined over structured objects, a fully rigorous treatment of couplings

between them should model the marginal distributions 𝛼 and 𝛽 in the transportation

problem as such. That is, the spaces 𝒳 and 𝒴 should themselves be spaces of

structured objects. In the case of sentences, this would translate to operating on

distributions 𝛼 ∈ 𝑃 (𝒳 ) and 𝛽 ∈ 𝑃 (𝒴) over sentences, a departure from most current

optimal-transport based approaches for language, which still operate on distributions

over words.

However, naively operating on such structured distributions might cause a combina-

torial explosion in the complexity of the problem. For example, for sentences of length

𝑘 defined over a vocabulary of 𝑛 words, the support of the marginal distributions 𝑞

and 𝑞 would be in the order of 𝑛𝑘. Consequently, the coupling between them would

have size 𝑛2𝑘, making any direct application of OT prohibitive. Instead, we propose

to enforce structure in the marginals through modular, hierarchical constraints.

As a concrete example, suppose 𝒳 and 𝒴 are spaces of sequences and that we have

a notion of distance between elements of these two spaces (e.g., based on a sequence

kernel), 𝑑(𝑥, 𝑦). Furthermore, assume the distributions over them are first-order

Markov models. That is, given probability measures 𝛼 ∈ ℳ1
+(𝒳 ) and 𝛽 ∈ ℳ1

+(𝒴),
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we assume they admit decompositions

𝛼(𝑥) = 𝑝(𝑥𝑛 | 𝑥𝑛−1)𝑝(𝑥𝑛−1 | 𝑥𝑛−2) . . . 𝑝(𝑥1) (B.1)

𝛽(𝑥) = 𝑞(𝑥𝑛 | 𝑥𝑛−1)𝑞(𝑥𝑛−1 | 𝑥𝑛−2) . . . 𝑞(𝑥1) (B.2)

The mass conservation constraints can in principle still be expressed as before:

𝒰(𝛼, 𝛽) =
{︀
𝜋 ∈ℳ1

+(𝒳 × 𝒴) : 𝑃𝒳 ♯𝜋 = 𝛼, 𝑃𝒴♯𝜋 = 𝛽
}︀

(B.3)

but now the pushforward constraints 𝑃𝒳 ♯𝜋 = 𝛼 have combinatorial complexity, and

might be prohibitive to compute or even express. Instead, we can leverage (B.1)

and (B.2) to define a set of 𝑛 marginal constraints on the conditional probabilities,

implicitly imposing on the coupling 𝜋 an analogous block structure decomposition.

The resulting decomposable description of the constraints would not only lead to

a simplified definition of the transportation problem in the structured case, but to

tractable algorithms to solve it too. Furthermore, it would be necessary to analyze the

implications of such structure for the dual problem, where such decompositions often

lead (after suitable relaxations) to a decoupling of variables and therefore efficient

algorithms. For this, we might be to take inspiration from dual decomposition methods

[164, 150] or other decomposition methods from the information geometry literature

[12].
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