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Predict-then-Optimize (PtO) Distances between Datasets
Predictions act as inputs to a downstream optimization, shifting the D D,
goal from minimizing prediction error to minimizing decision regret 2 e .
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In decision-focused learning (DFL), the loss is decision regret:
the difference in objective value between the decision made using
the prediction and the optimal decision using the true label.

* Enable principled reasoning about task similarity ana
generalization, especially when data or compute is limited

e Core for transter learning, multitasks learning, data valuation, etc

gy, y) = |y -w*@y) —y- - w*(y)| e Model agnostic, pre-computed decisions

In decision-focused ML, two tasks that look similar in their teature-label space can lead to very different decisions.
OTD?3 is a principled way to measure dataset similarity that accounts for the full feature-label-decision relationship,
providing a more reliable signal for transferability when the goal is to learn good decisions—not just good predictions.

How should we compare decisions? We propose decision quality disparity:
the difference in objective value achieved by two decisions when evaluated ,
J 4 OTD3(D, D a) £ min Cp,o(W, W) dr
on the same true labels. reTl(r.) ‘
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L,z y*,2%) = | q(y, y*) — q(z, 2%)|

What is the distance between feature-label-decision pairs? 1. A true metric in the space of measures of
We take a convex combination of the feature-label distance and the disparity feature-label-decision pairs
in decision quality —used as the cost in the optimal transport formulation. 2. Provides a bound on the target regret
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Applications and Experimental Results

Predict transterability of decision-focused learned models on shifted domains
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Distinguish transtferability success Signal DFL transtfer performance
across different downstream tasks under limited data availability
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