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Abstract

Comparing datasets is a fundamental task in
machine learning, essential for various learning
paradigms—from evaluating train and test datasets
for model generalization to using dataset similar-
ity for detecting data drift. While traditional no-
tions of dataset distances offer principled mea-
sures of similarity, their utility has largely been
assessed through prediction error minimization.
However, in Predict-then-Optimize (PtO) frame-
works, where predictions serve as inputs for down-
stream optimization tasks, model performance is
measured through decision regret rather than pre-
diction error. In this work, we propose OTD3 (Op-
timal Transport Decision-aware Dataset Distance),
a novel dataset distance that incorporates down-
stream decisions in addition to features and la-
bels. We show that traditional feature-label dis-
tances lack informativeness in PtO settings, while
OTD3 more effectively captures adaptation suc-
cess. We also derive a PtO-specific adaptation
bound based on this distance. Empirically, we
show that our proposed distance accurately pre-
dicts model transferability across three different
PtO tasks from the literature. Code is available at
https://github.com/paularodr/OTD3

1 INTRODUCTION

Comparing datasets is a fundamental task in machine learn-
ing and a crucial component of various downstream tasks.
Understanding the similarity (or dissimilarity) of datasets
can inform decisions in transfer learning [Tran et al., 2019,
Ben-David et al., 2010], multitask learning [Janati et al.,
2019, Shui et al., 2019], and data valuation [Just et al., 2023,
Jiang et al., 2023], among other applications. For example,
selecting a pre-training dataset that is similar to a data-poor

target domain can lead to better fine-tuning performance.
Notions of dataset distance have emerged as a principled
way of quantifying these similarities and differences [Mer-
cioni and Holban, 2019, Janati et al., 2019, Alvarez-Melis
and Fusi, 2020]. Such distances provide insights into the re-
lation and correspondence between data distributions, help
in evaluating model performance, and guide the selection of
appropriate learning algorithms.

The concept of dataset can vary based on context and objec-
tives. In classical statistics, it generally refers to feature vec-
tors, focusing on the distribution and relationships within a
feature space X . Classic distributional distances offer formal
measures of dataset similarity: the Total Variation distance
[Verdú, 2014] quantifies the maximum discrepancy between
distributions; Wasserstein distance, or Earth Mover’s Dis-
tance, measures the cost of transforming one distribution
into another [Villani, 2008]; and Integral Probability Metrics
(IPM) measure how well a class of classifiers can distinguish
samples from the two distributions [Müller, 1997].

In supervised learning, datasets include both features from
space X and labels from space Y . The distance between
two such datasets involves measuring both the feature
and label differences. This can be challenging when the
label space Y is not a metric space. Approaches such as
those proposed by Courty et al. [2014], Alvarez-Melis
et al. [2018], and Alvarez-Melis and Fusi [2020] offer
a principled method for computing dataset distances
considering the joint feature-label distribution P(X × Y).
These methods ensure that both the features and labels are
adequately accounted for in the distance measure, offering
a more holistic comparison between datasets.

However, the Predict-then-Optimize (PtO) framework in-
troduces a unique challenge by using machine learning pre-
dictions as inputs for a downstream optimization problem,
shifting the focus from minimizing prediction error to min-
imizing decision regret [Donti et al., 2017, Elmachtoub and
Grigas, 2022, Wilder et al., 2019, Mandi et al., 2023]. This
results in PtO tasks involving not just a feature-label dataset,
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but also a decision space Ω of optimization solutions,
creating a feature-label-decision dataset with samples in
X ×Y×Ω. The decision space Ω may not be a metric space;
for example, decisions related to the solution of a top-k prob-
lem do not necessarily form a metric space. Moreover, deci-
sions might need to be evaluated under various criteria, such
as minimizing travel distance or maximizing safety. Even if
Ω were a metric space, it is uncertain whether its associated
distance would be meaningful for assessing the adaptability
of a PtO task across different domains. This complexity un-
derscores the need for new distance measures that incorpo-
rate decisions to accurately capture the nature of PtO tasks.

In this work we introduce OTD3, a decision-aware dataset
distance based on Optimal Transport (OT) techniques [Vil-
lani, 2008] that incorporates features, labels, and decisions.
OTD3 is the first distance metric designed to account for
downstream decisions, directly addressing the unique chal-
lenges posed by PtO tasks. We evaluate its utility as a
learning-free criterion for assessing the transferability of
models trained within a decision-focused learning (DFL)
framework under distribution shift. Within this framework,
models are commonly trained using surrogate loss functions
that aim to minimize decision regret [Wilder et al., 2019,
Mandi et al., 2023]. In the context of domain adaptation
in PtO, where we measure performance through decision
regret, we derive a generalization bound that highlights
the importance of considering features, labels, and deci-
sions jointly. Our empirical analysis spans three PtO tasks
from the literature—Linear Model Top-K, Warcraft Shortest
Path, and Inventory Stock Problem—demonstrating that our
decision-aware distance better predicts transfer performance
compared to feature-label distances alone.

In summary, we make the following contributions:
• We introduce a decision-aware dataset distance
• We derive an adaptation bound for PtO tasks in terms of

this distance
• We empirically validate our approach on three PtO tasks

2 RELATED WORK

Dataset Distances via Optimal Transport Optimal
Transport (OT)-based distances have gained traction as an
effective method for comparing datasets. These methods
characterize datasets as empirical probability distributions
supported in finite samples, and require a cost function be-
tween pairs of samples to be provided as an input. Most
OT-based dataset distance approaches define this cost func-
tion solely in terms of the features of the data, either directly
or in a latent embedding space. For example, Muzellec and
Cuturi [2018] proposed representing objects as elliptical
distributions and scaling these computations, while Frogner
et al. [2019] extended this to discrete measures. Delon and
Desolneux [2020] introduced a Wasserstein-type distance
for Gaussian mixture models. These approaches are use-

ful mostly in unsupervised learning settings since they do
not take into account labels or classes associated with data
points. To address this limitation, a different line of work has
proposed extensions of OT amenable to supervised or semi-
supervised learning settings that explicitly incorporate label
information in the cost function. Courty et al. [2014] used
group-norm penalties to guide OT towards class-coherent
matches while Alvarez-Melis et al. [2018] employed sub-
modular cost functions to integrate label information into
the OT objective. For discrete labels, Alvarez-Melis and
Fusi [2020] proposed using a hierarchical OT approach to
compute label-to-label distances as distances between the
conditional distributions of features defined by the labels.

Predict-then-Optimize (PtO) The PtO framework has
seen significant advancements in integrating machine
learning with downstream optimization. The frameworks
proposed by Amos and Kolter [2017], Donti et al. [2017],
Wilder et al. [2019] and Elmachtoub and Grigas [2022]
have been instrumental in this integration. Subsequent work
has focused on differentiating through the parameters of
optimization problems with various structures, including
learning appropriate loss functions [Wang et al., 2020,
Shah et al., 2022, 2023, Bansal et al., 2023] and handling
nonlinear objectives [Qi et al., 2023, Elmachtoub et al.,
2025]. Recent efforts have addressed data-centric challenges
within PtO, including including worst-case distribution
shifts [Ren et al., 2024], robustness to adversarial label
drift [Johnson-Yu et al., 2023] and active learning for
data acquisition [Liu et al., 2025]. While these works
propose task-specific learning algorithms, they all share
a common underlying principle: dataset similarity. In
distribution shifts and label drift, the key challenge lies
in the (dis)similarity between training and test datasets,
whereas in data acquisition, it concerns the (dis)similarity
between the training dataset and the acquisition source.

3 BACKGROUND

3.1 OPTIMAL TRANSPORT

OT theory provides an elegant and powerful mathematical
framework for measuring the distance between probability
distributions by characterizing similarity in terms of corre-
spondence and transfer [Villani, 2008, Kantorovitch, 1942].
In a nutshell, OT addresses the problem of transferring prob-
ability mass from one distribution to another while minimiz-
ing a cost function associated with the transportation.

Formally, given two probability distributions α and β de-
fined on measurable spaces X and Y , respectively, the OT
problem seeks a transport plan π (defined as a coupling be-
tween α and β) that minimizes the total transportation cost.
According to the Kantorovich formulation [Kantorovitch,
1942], for any coupling π, the transport cost between α and



β with respect to π is defined as:

dT (α, β;π) :=

∫
X×Y

c(x, y) dπ(x, y), (1)

where c(x, y) is the cost function representing the cost of
transporting mass from point x ∈ X to point y ∈ Y . The
transport cost dT (α, β;π) defines a distance, known as the
transport distance with respect to π, between α and β. The
OT problem then minimizes the transport cost over all pos-
sible couplings between α and β, defining the optimal trans-
port distance as:

dOT (α, β; c) := min
π∈Π(α,β)

∫
X×Y

c(x, y) dπ(x, y), (2)

where Π(α, β) denotes the set of all possible couplings
(transport plans) that have α and β as their marginals. This
formulation finds the optimal way to transform one distribu-
tion into another by minimizing the total transportation cost.

3.2 OPTIMAL TRANSPORT DATASET DISTANCE

In supervised machine learning, datasets can be represented
as empirical joint distributions over a feature-label space
X × Y . OT distances can be used to measure the similar-
ity between these empirical distributions, thus providing a
principled way to compare datasets. Given two datasets D
and D′ consisting of feature-label tuples (x, y) and (x′, y′),
respectively, the challenge of defining a transport distance
between D and D′ lies in the challenge of defining an ap-
propriate cost function between (x, y) and (x′, y′) pairs.
A straightforward way to define the feature-label pairwise
cost is via the individual metrics in X and Y if available. If
dX and dY are metrics on X and Y , respectively, the cost
function can be defined as:

cXY((x, y), (x
′, y′)) =

(
dX (x, x′)p + dY(y, y

′)p
)1/p

(3)

for p ≥ 1. This point-wise cost function defines a valid met-
ric on X × Y . However, it is uncommon for dY to be read-
ily available. To address this, Courty et al. [2017] propose
replacing dY(y, y

′) with a loss function L(y, y′) that mea-
sures the discrepancy between y and y′ while Alvarez-Melis
and Fusi [2020] suggest using a p-Wasserstein distance be-
tween the conditional distributions of features defined by
y and y′ as an alternative to dY(y, y

′). The latter is known
as the Optimal Transport Dataset Distance (OTDD). We
also use this term when referring to the dataset distance
dOT (D,D′; cXY).

3.3 PREDICT-THEN-OPTIMIZE

The Predict-then-Optimize (PtO) framework involves two
sequential steps: prediction and optimization. First, a pre-
dictive model f is used to predict costs based on some fea-
tures x1, . . . , xN ∈ X , represented as ŷ = [ŷ1, . . . , ŷN ] =

[f(x1), . . . , f(xN )]. Second, an optimization model uses
these predicted costs ŷ as the objective function costs:

M(ŷ) := argmaxw g(w; ŷ), s.t. w ∈ Ω, (4)

where Ω is the space of feasible solutions. We assume
that w∗

M : Rd → Ω acts as an oracle for solving this
optimization problem, such that w∗

M (ŷ) represents the
optimal solution for M(ŷ). However, the solution w∗

M (ŷ)
is optimal for M(ŷ) but might not be optimal for M(y),
where y represents the true costs.

Given a hypothesis function f : X → Y , we measure
its performance on the optimization problem M(y) using
the predicted cost vector ŷ = [f(x1), . . . , f(xN )] and the
true cost vector y = [y1, . . . , yN ]. This is quantified as
the decision quality q(ŷ,y) := g(w∗

M (ŷ);y), reflecting
the quality of decisions made using w∗

M (ŷ) as a solution
to M(y). The decision quality regret, which evaluates the
performance of f , is defined as:

qreg(ŷ,y) = |q(y,y)− q(ŷ,y)|. (5)

The goal of decision-focused learningWilder et al. [2019]
in a PtO task is to learn a predictive model fθ that mini-
mizes the decision quality regret, ensuring that the decisions
derived from the predictions are as close to optimal as pos-
sible.

4 MOTIVATING EXAMPLE

To illustrate the role of decisions in PtO task comparisons,
we look at correspondence between task similarity and
zero-shot transfer performance in a simple PtO task: the
Linear Model Top-K setting from Shah et al. [2022]. This
task consists of two stages:

Predict: Given a resource’s feature xn ∼ PX , where
PX = Unif[−1, 1], a linear model predicts its utility ŷn,
where the true utility follows yn = p(xn), a cubic polyno-
mial. Predictions for N resources form ŷ = [ŷ1, . . . , ŷN ].

Optimize: Select the top K = 1 resource by solving
M(ŷ) = maxz∈[0,1]N {z · σx(ŷ)} such that ||z||0 =
K, where σx orders ŷ in ascending order of x =
[x1, . . . , xN ].

We analyze this task under target shifts—where label distri-
butions change while feature distributions remain constant—
parametrized by γ, where the shifted utility function is given
by pγ(x) = 10(x3 − γx). We define two source domains,
A and B, with shifts γ = 0 and γ = 1.2, respectively. The
target domain C is characterized by γ = 0.65.1

Assume we have only a few instance DC =
{(xi,yi)}ni=1 ∼ C, but want to learn how to per-
form Top-K selection in domain C when the true costs y

1We choose γ = 0.65 for consistency with Shah et al. [2022].



Figure 1: Linear Model Top-K instances under target shift

are unknown. This limited data is insufficient for directly
learning weights in this domain. However, we have access
to datasets DA and DB drawn form source domains A
and B, respectively, allowing us to learn decision-focused
weights θA and θB .2 The key question is: which weights,
θA or θB , should be used for the PtO task in DC?

A natural approach is to use the OTDD to identify the
source dataset closest to the target. However, in this
case, the computed distances dOT (DA,DC ; cXY) and
dOT (DB ,DC ; cXY) are equal, suggesting no preference
between θA and θB . Yet, in practice, θA yields zero regret
on DC , while θB results in a regret close to 4, making θA the
clear choice for the PtO task on DC (see Appendix Fig. 8 for
details). Figure 1 illustrates this discrepancy: the model with
θA (orange) successfully selects the correct Top-K resource
in DC , while the model with θB (green) fails to do so. Since
regret differs significantly, dataset distances should reflect
that DC is closer to DA than DB . We argue that feature-
label distances alone are insufficient, and incorporating
decision components is necessary for distances to accurately
reflect similarities, and hence adaptability, in PtO tasks.

5 DECISION-AWARE DATASET
DISTANCE

A dataset for a PtO task with downstream optimization
M(·) and oracle w∗

M consists of feature-label-decision
triplets (x, y, z) ∈ X × Y × Ω, where the decision z is
the precomputed optimal solution to the optimization task
parametrized by the true label y, i.e., z = M(y). Our ob-
jective is to formalize a notion of similarity between PtO
tasks by defining a distance d(D,D′) between datasets D =
{(x, y,M(y))}(x,y)∼P and D′ = {(x, y,M ′(y))}(x,y)∼P′

for any distributions P and P ′ over the joint feature-
label space X × Y and optimization problems M and M ′

parametrized by Y .

OT provides a natural framework for comparing datasets
by leveraging the geometry of the underlying space and

2We use github.com/sanketkshah/LODLs

establishing correspondences between distributions. It has
been used as the foundation for OTDD, a dataset distance
defined over features and labels [Alvarez-Melis and Fusi,
2020]. We extend this idea to PtO tasks, where dataset dis-
tances must also account for differences in decisions arising
from the downstream optimization process. Unlike standard
settings where similarity is assessed based only on feature-
label distributions, PtO tasks introduce an additional layer
of complexity: decisions z are solutions to an optimization
problem dependent on y, and their quality directly impacts
task performance.

In the following sections, we formalize our proposed
decision-aware dataset distance by extending OTDD to
incorporate decision quality. This formulation provides a
principled way to compare PtO datasets, ensuring that the
resulting distance reflects meaningful differences in feature-
label-decision distributions while remaining sensitive to the
structure of the underlying optimization problem.

5.1 DATASET DISTANCE FORMULATION

To apply OT to datasets in PtO settings, we need a well-
defined metric for the joint space of features, labels and
decisions, W := X × Y × Ω, to serve as the ground cost
function in the OT problem. A natural approach is to con-
struct distances in W by combining metrics from the feature
space X , the label space Y , and the decision space Ω. In
most well-studied PtO settings, X and Y are equipped with
metrics dX and dY , respectively, providing a natural founda-
tion for measuring feature-label distances. However, defin-
ing an appropriate metric for the decision space Ω requires
special consideration.

While some decision spaces naturally admit standard met-
rics, others—such as those arising in resource allocation or
scheduling—do not align with conventional distance mea-
sures. Even when a metric exists for Ω, it may fail to capture
decision quality regret, the ultimate objective in PtO tasks.
For example, in a p× q grid, Euclidean or Manhattan dis-
tances can measure geometric differences between paths but
fail to account for task-specific objectives, such as minimiz-
ing costs or maximizing safety.

To ensure the ground cost function for W properly reflects
both decision quality and feature-label relationships, we
introduce the concept of decision quality disparity. This
extends traditional metrics by comparing decisions not just
in terms of their spatial or structural differences but also in
terms of their effectiveness under different labels. Specifi-
cally, decision quality disparity measures the extent to which
two decisions z, z′ ∈ Ω differ in performance when evalu-
ated under labels y and y′ respectively.

Definition 5.1. For an optimization problem M(·) with
objective function g, the decision quality disparity function
lg( · ; y, y′) : Ω2 → R measures the difference in decision
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quality between two decisions z, z′ ∈ Ω given the labels
y, y′ ∈ Y . It is defined as:

lg(z, z
′; y, y′) := |g(z; y)− g(z′; y′)|. (6)

Note that decision quality regret (Section 3.3) is a spe-
cial case of decision quality disparity, where qreg(ŷ, y) =
lg(w

∗(ŷ), w∗(y); y, y) for an optimization oracle w∗. We
use decision quality disparity to define a point-wise distance
in the joint feature-label-decision space W . The resulting
ground cost function cαPtO for the OT problem is given by:

cαPtO((x, y, z), (x
′, y′, z′)) := αX · dX (x, x′)

+ αY · dY(y, y′) (7)
+ αW · lg(z, z′; y′, y′),

for α = [αX , αY , αW ] ∈ R3
≥0 such that ||α|| = 1. Here,

dX and dY represent metrics for the feature space X and
label space Y , while lg captures differences in decisions.
The additive combination in cPtO ensures simplicity and
validity as a metric, with each component independently
reflecting a distinct aspect of similarity. This design avoids
complex, application-specific interactions and prioritizes
interpretability. In the appendix, we show that cPtO is a
proper distance in W . Notably, we set αY > 0 to analyze
scenarios where both labels and decisions contribute to PtO
similarity versus cases where labels may be redundant.

We extend this point-wise distance to a distance between
datasets D and D′ by solving the OT cost with ground
cost cαPtO, denoted as dOT (D,D′; cαPtO). We refer to this
distance as the Optimal Transport Decision-Aware Dataset
Distance (OTD3).

Proposition 5.2. For any α = (αX , αY , αW ) with
αX , αY , αW > 0, dOT (D,D′; cαPtO) is a valid metric on
P(X × Y × Ω), the space of measures over joint distribu-
tions of features X , labels Y , and decisions Ω. If αY = 0,
dOT (D,D′; cαPtO) is at least a pseudometric.

This decision-aware dataset distance compares decisions z
and z′ by evaluating their decision quality disparity in R
relative to a pair of fixed labels, rather than directly com-
paring them in the decision space Ω. Intuitively, comparing
decisions based on their quality, i.e., comparing g(z; y) with
g(z′; y), rather than comparing z and z′ directly using some
metric in Ω, if available, is reasonable because similar de-
cisions might yield significantly different outcomes in the
objective function. In Section 5.2 we show that comparing
decision in this way offers a principled means of assessing
adaptation success of PtO tasks across distributions in the
feature-label-decision space.

Component Weights are Task-Specific Hyperparame-
ters. The weights α on the ground cost component (Eq. 7),

are pivotal in defining the OTD3, offering a flexible frame-
work to account for the varying importance of features,
labels, and decisions in PtO tasks. Unlike previous OT-
based dataset distances that did not differentiate between
the weights of feature and label components in the ground
cost function—often because both were measured in the
same space Alvarez-Melis and Fusi [2020] or were weighted
equally Courty et al. [2017]— our method allows for distinct
weights, enabling a more nuanced evaluation of dataset sim-
ilarity tailored to each specific task. This flexibility ensures
that the distance metric reflects the relative significance of
each dataset component according to its impact on the PtO
task, which can vary widely in practice depending on the
application.

The impact of each component—features, labels, and de-
cisions—on the overall distance can vary across PtO tasks.
In particular, the decision and label components may some-
times capture overlapping structure. When such alignment
occurs, the added value of decision information may be
diminished, while in other cases, decisions encode comple-
mentary information. This mirrors the intuition from multi-
variate modeling where high correlation between variables
can reduce the sensitivity to their individual weights. While
our current formulation provides flexibility via weighting,
understanding when and how much each component con-
tributes remains an open and important question. We return
to this empirically in Section 7.1.

5.2 DECISION REGRET ADAPTATION BOUND

Given source and target distributions PS and PT over X ×
Y , we study domain adaptation from PS to PT in a PtO
framework where decisions are generated by a downstream
optimization problem M(·) parametrized in Y . Let f : X →
Y be a labeling function. We define the expected cost of f
under a distribution P over X × Y with respect to any cost
function l : Y × Y → R as

err(f ; l,P) := E(x,y)∼P l(f(x), y). (8)

In PtO tasks, the performance of f over a distribution P
is quantified as the expected decision quality regret, given
by err(f ; qreg,P). Our goal is to bound this error on the
target distribution, err(f ; qreg,PT ), in terms of the distance
between PT and the source distribution PS . We use OTD3

to achieve this.

Prior work by Courty et al. [2017] provided adaptation
bounds for an expected target error err(f ; l,PT ) with a
cost function l that is bounded, symmetric, k-Lipschitz,
and satisfies the triangle inequality. However, decision qual-
ity regret qreg, the key cost function in PtO tasks, is inher-
ently non-symmetric, making these bounds inapplicable to
err(f ; qreg,P). To address this, we introduce the notion of
decision quality disparity lq (Definition 5.1) to bound deci-
sion quality regret qreg. Additionally, we assume that the de-



cision quality function q has a bounded rate of change with
respect to both the predicted and true cost vectors (Assump-
tion 5.3). Under these conditions, we derive an adaptation
bound for err(f ; qreg,PT ) using the OTD3 (Theorem 5.5).
As demonstrated in lemmas B.1 and B.2 in the Appendix,
Assumption 5.3 holds for common PtO task structures.

Assumption 5.3. The decision quality function q is k1, k2-
Lipschitz. This means that for any y, y∗, z, z∗ ∈ Y the
following inequality holds:

|q(y, y∗)− q(z, z∗)| ≤ k1∥y − z∥+ k2∥y∗ − z∗∥

.

Definition 5.4 (Courty et al. [2017]). Let µ1 and µ2 be
distributions over some metric space X with metric dX .
Let Π(µ1, µ2) be a joint distribution over µ1 × µ2. Let
ϕ : R → [0, 1]. A labeling function f : X → R is ϕ-
Lipschitz transferable with respect to Π if for all λ > 0:

Pr
(x1,x2)∼Π(µ1,µ2)

[|f(x1)− f(x2)| > λdX (x1, x2)] ≤ ϕ(λ).

Theorem 5.5. Suppose Assumption 5.3 holds for an opti-
mization problem M(·) with optimization oracle w∗. Let
f : X → Y be a labeling function, and define the dis-
tributions Pf

T := (x, y, w∗(f(x)))(x,y)∼PT
and P∗

S :=
(x, y, w∗(y))(x,y)∼PS

over the joint feature-label-decision
space W . Let Π∗ denote the optimal coupling for the
OT problem with ground cost cαPtO between Pf

T and P∗
S .

Let f̃ be a labeling function that is ϕ-Lipschitz transfer-
able with respect to Π∗. Assume that the feature space
X is bounded by K and that f̃ is l-Lipschitz, satisfying
|f̃(x1)− f̃(x2)| ≤ 2lK = L.

For any λ > 0 and αW ∈ (0, 1) such that (λk1 + k2 +
1)αW = 1, with αX = λk1αW and αY = k2αW , the
following bound holds with probability at least 1− δ:

err(f ; qreg,PT ) ≤ err(f̃ ; qreg,PS) + err(f̃ ; qreg,PT )

+ k1Lϕ(λ) +
1

αW
dOT (Pf

T ,P
∗
S ; c

α
PtO).

The proof of Theorem 5.5 is provided in the supplemen-
tary material. The first two terms in the bound represent the
joint decision quality regret minimizer across the source and
target distributions. This indicates that successful domain
adaptation in the PtO framework requires predictions that
achieve low regret in both domains simultaneously. This re-
sult aligns with the findings of Courty et al. [2017], Mansour
et al. [2009] and Ben-David et al. [2010] in the context of
domain adaptation for supervised learning. The third term
k1Lϕ(λ) captures the extend to which Lipschitz continuity
between the source and target distributions may fail.

The final term measures the discrepancy between the source
domain P∗

S and the predicted target domain Pf
T using the

optimal transport distance between their joint distributions

of features, labels, and decisions. The bound relies on two
key parameters: λ and αW . λ controls the weight of the Lip-
schitz term and is valid for any λ > 0, while αW determines
the weight assigned to decisions in the convex combination
cαPtO. Note that the bound holds for any combination of
weights αX , αY , αW , as λ can always be adjusted to ensure
a valid convex combination.

Our approach recognizes the necessity of incorporating de-
cisions into dataset distances when used for domain adap-
tation purposes for PtO tasks. Our OT-based dataset dis-
tance, defined by the ground cost function cαPtO, jointly
accounts for differences in all key components—features,
labels, and decisions—providing a comprehensive measure
that is meaningful for adaptability of PtO tasks.

6 EXPERIMENTAL SETTINGS

We conduct experiments on three PtO settings with diverse
structures and sensitivity to distribution shifts, making them
well-suited for analyzing dataset distances in domain adap-
tation. Additional details are provided in the Appendix.

Linear Model Top-K [Shah et al., 2022]. This setting
involves training a linear model to map features xn ∼
U [−1, 1] to true utilities based on a cubic polynomial
p(xn) = 10(x3

n − 0.65xn). The downstream task is select-
ing the K elements with highest utility. We introduce syn-
thetic distribution shifts by modifying the original feature-
label distribution P = (Id, p)∗U [−1, 1]. Specifically, for
various values of γ ∈ [0, 1.3], we define the feature-label
distributions Pγ = (Id, pγ)∗U [−1, 1] where pγ(xn) =
10(x3

n − γxn), using P0.65 as the target distribution.

Warcraft Shortest Path [Vlastelica et al., 2020]. This
task involves finding the minimum-cost path on RGB grid
maps from the Warcraft II tileset dataset, where each pixel
has an unknown travel cost. The goal is to predict these costs
and then determine the optimal path from the top-left to the
bottom-right pixel. The target distribution P is defined over
Rd×d×3×Rp×p, with d = 96 and p = 12. To simulate distri-
bution shifts, we generate synthetic distributions Pγ by uni-
formly sampling pixel class costs from the same range as P .

Inventory Stock Problem [Donti et al., 2017]. This task
involves determining the order quantity z to minimize costs
given a stochastic demand y, influenced by features x. The
cost function fstock includes linear and quadratic costs for
both ordering and deviations (over-orders and under-orders)
from demand. We generate problem instances by randomly
sampling x ∈ Rn and then generating p(y|x; θ) according
to p(y|x; θ) ∝ exp

(
(θTx)2

)
. Distribution shifts are intro-

duced in features x and labels y: x is sampled from a Gaus-
sian distribution with a mean sampled from U [−0.5, 0.5],
and θ is also sampled from a Gaussian distribution.



(a) Linear Model Top-K (b) Warcraft Shortest Path (c) Inventory Stock

Figure 2: Component weighting and transferability prediction. The color scale represents the R-square value from
a linear regression of OTD3—with all possible weight combinations for features, labels, and decisions—against regret
transferability. The left border of the triplot shows R-square values when using OTD3 with αW = 0, equivalent to OTDD.

7 EXPERIMENTS

7.1 SELECTING SOURCE DATASETS FOR
TRANSFER LEARNING

Dataset distances for feature-label datasets, such as OTDD,
have shown to be predictive of classification error/accuracy
transfer—i.e., the error/accuracy on a target dataset Dtest

T

for a model adapted from a source DS to a target DT .
Alvarez-Melis and Fusi [2020] demonstrated that OTDD
effectively predicts transferability and used this measure
to select the best source dataset in a transfer learning task.
We extend this source dataset selection experiment to the
PtO setting, evaluating how well the OTD3 predicts regret
transferability between PtO tasks.

We analyze the correlation between the distance from a
source dataset DS to a target dataset DT and the regret in-
curred on unseen target data Dtest

T when adapting a model
from DS to DT —i.e. pretraining on DS and fine-tuning on
DT . We compare OTD3(DS ,DT ) against regret transfer-
ability T , which quantifies the relative reduction in regret
when transferring from DS to DT :

T (S → T ) = 100× reg(DT )− reg(DS → DT )

reg(DT )
,

where reg(DT ) represents the mean regret when training
directly on DT , and reg(DS → DT ) represents the mean
regret when adapting from DS to DT . Each regret term is
computed on Dtest

T , ensuring that transferability is evaluated
based on the model’s performance on unseen target data.

For every experimental setting we generate K source
datasets DS1

, . . . ,DSK
, each sampled from a different

distribution PSi
, along with training and test datasets

DT and Dtest
T drawn from a target distribution PT . For

each source-target pair (DSi
,DT ), we compute the regret

transferability T (Si → T ) by training models using
standard DFL approaches (Appendix D) and analyze its
relationship with the OTD3.

Figure 3: Dataset distance vs PtO adaptation in Warcraft. Re-
sults for a target dataset with 100 samples against 30 source
datasets with 1,000 samples. Dataset distances OTDD and
OTD3 are computed with weights that maximize the corre-
lation between distance and regret transferability.

Predicting transferability. Figure 2 shows the correlation
strength (R2 from linear regression) between regret transfer
and dataset distance for different weighting combinations
α. In the Linear Model Top-K and Warcraft settings, incor-
porating the decision component (αW > 0) significantly
enhances the correlation between dataset distance and re-
gret transfer, even when the label component is excluded
(αY = 0). Conversely, omitting the decision component
(αW = 0, left side of the triplot) weakens this correla-
tion. This trend is further emphasized when comparing the
highest achievable correlation. In Warcraft, the OTD3 with
maximizing weights is far more predictive of regret transfer
than the OTDD (or the OTD3 with αW = 0) under its best
weighting (Figure 3). The best-performing weights in this
case were αX = 0.8 and αY = 0.2 for the OTDD, and
αX = 0.75, αY = 0, and αW = 0.25. We denote these
optimized versions as the OTDD∗ and the OTD3∗.

In Figure 4 we extend our analysis to varying sizes of
the target dataset, ranging from 10 to 100 samples, which
are used for dataset distance computation and fine-tuning,



Figure 4: Correlation between dataset distance and regret
transferability (R2) vs. target sample size, for four distance
variants: OTDD with equal feature-label weights and op-
timized weights (OTDD*), and OTD3 with equal output
weights (0.5, 0.25, 0.25) and optimized weights (OTD3*).

while keeping the source datasets and target test set fixed
at 1,000 samples each. We compute dataset distances
using a three-dimensional weight grid and compare the
correlation achieved with equal input-output weighting
(αX = 0.5, αY = 0.5 for OTDD, αX = 0.5, αY =
0.25, αW = 0.25 for OTD3) against OTDD* and OTD3*.

Incorporating decisions into the dataset distance, with ap-
propriate weighting, consistently improves the predictability
of PtO transferability across all target sample sizes. While
tuning the decision component weight significantly boosts
correlation, rapidly reaching R2 > 0.6, OTD3 outperforms
OTDD from as few as 30 target samples onward, demon-
strating its effectiveness even without extensive data for
weight optimization.

Decision vs label component. The advantage of includ-
ing the decision component over the label component is
less pronounced in the Inventory Stock problem (Fig. 2c).
Here, either the label or decision component with features
still maintains a strong correlation between regret transfer
and dataset distance. To explore this further, we examine
how differences in the label space dy(y, y

′) correlate with
differences in the decision space lq(y, y

′, z, z′). In the In-
ventory Stock problem, there is a strong correlation between
these differences (Appendix Fig. F.1), suggesting that deci-
sions are closely tied to the labels. In contrast, the Warcraft
domain lacks this strong correlation (Appendix Fig. F.1),
making the decision component more critical for accurately
predicting transferability.

7.2 CHARACTERIZING TARGET SHIFT IMPACT

Target shift—where label distributions change while feature
distributions remain constant—creates mismatches between
training and test datasets, often degrading performance
in supervised learning. However, our experimental results

(a) Not including decisions (b) Including decisions

Figure 5: Distance vs. Adaptation for two tasks in the War-
craft setting. Dataset distance is computed (a) without incor-
porating decisions, and (b) with decision incorporation.

(Fig. 3[left]) show that some source datasets with sig-
nificant target shift—characterized by high feature-label
distance—can still achieve low regret in the PtO task. This
suggests that target shift may not impact PtO performance
in the same way it affects purely predictive tasks.

To further explore the impact of target shift in PtO tasks,
we analyze the Warcraft setting under two downstream opti-
mization tasks: minimizing path cost alone and minimizing
both path cost and length. We apply the same transfer
learning experiment from Section 7.1 it to these two tasks.
Although the same target shifts are applied on both tasks,
their effect on PtO transferability is less severe for mini-
mizing path cost and length compared to minimizing cost
alone (Fig. 5). Our decision-aware dataset distance, using
weights from Section 7.1, effectively captures this behavior.
The distance distribution for the task less impacted by the
target shift is more left-skewed (Fig. 5b). In contrast, the
dataset distance that only accounts for features and labels,
is unable to differentiate between these two tasks (Fig. 5a).

7.3 ROBUSTNESS TO MODEL COMPLEXITY

We assess the robustness of OTD3 by evaluating its perfor-
mance across five model architectures of increasing com-
plexity in the Warcraft setting (Figure 6). Although OTD3

is model-agnostic by design, we measure its effectiveness
through its ability to predict model transferability, specif-
ically via R2 values across weight configurations. In this
setting, we find that intermediate-complexity models (Mo-
bilenet, Partial ResNet18, Partial ResNet34) exhibit both
high R2 and broad regions of strong performance. This sug-
gests that OTD3 can reliably identify informative weightings
when the underlying regret landscape is structured yet stable.
The smoothness of these regions also indicates robustness
to variations in component weights.

At the lower end of the complexity spectrum, the Small



Small CNN
No. params: 1,361

Mobilenet
No. params: 55,520

Partial Resnet18
No. params: 157,568

Partial Resnet34
No. params: 231,552

Deeper Resnet34
No. params: 1,348,032

R2

Figure 6: OTD3 Performance as Model Complexity Increases. Predictability of OTD3 (measured via R2) across fea-
ture/label/decision weightings, shown for increasingly expressive model architectures on the Warcraft Shortest Path setting.

CNN displays low regret variance overall. Still, OTD3 is
able to highlight a narrow region of relative predictive
strength—helping distinguish among otherwise uniformly
weak configurations. In contrast, the most complex model
(Deeper ResNet34) presents high regret variance, likely
due to over-parameterization relative to the limited data. In
this case, OTD3 struggles to recover consistent patterns, re-
flecting the difficulty of transferability prediction in noisy,
unstable regret landscapes.

These results suggest OTD3 is most effective when regret
variation is meaningful but not overly erratic, performing
optimally when relationships between dataset distance and
transferability are discernible and not obscured by noise
from inappropriate model complexity. The robust perfor-
mance across reasonably complex architectures highlights
OTD3’s practical utility in PtO scenarios.

8 DISCUSSION

We introduce the first dataset distance tailored to PtO tasks,
integrating features, labels, and decisions to better assess
prediction-to-decision similarities. Our experiments show
that incorporating decisions significantly improves transfer
predictability, particularly in complex settings where label
shifts do not directly correlate with decisions. This approach
effectively captures task dynamics dictated by downstream
optimization structures without requiring explicit analysis.
Moreover, our framework is adaptable, allowing flexible
weighting of components to provide meaningful compar-
isons across diverse PtO tasks—an essential feature for real-
world applications where datasets vary not only in features
and labels but also in decision complexity.

Several promising directions can extend our framework.
Handling decision components of varying structures and
dimensions using techniques like the Gromov-Wasserstein
[Mémoli, 2011] distance could bridge gaps between
non-comparable decision spaces. Further refining the
weighting of features, labels, and decisions—particularly
through tuning methods independent of transferability
measures—could enhance its utility. Additionally, adapting

our approach to more intricate PtO structures, such as those
where multiple feature-label pairs define a single decision,
through a hierarchical OT framework [Yurochkin et al.,
2019], could further improve its applicability.

By establishing this first notion of dataset distance designed
for PtO tasks, our work lays a foundation for future research,
opening avenues for more robust and versatile transferability
metrics in decision-aware learning.
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A PROOF OF PROPOSITION 5.2

To demonstrate that the OTD3, dOT (·, ·; cPtO) is a valid metric, it is sufficient to verify that the ground cost function cPtO

used in the optimal transport problem is a metric on X ×Y ×Ω. If cPtO is indeed a metric, then dOT (·, ·; cPtO) corresponds
to the Wasserstein distance Villani [2008]. In Equation 7, dOT (·, ·; cPtO) is defined as a convex combination of dX and dY ,
which are metrics on X and Y respectively, and the decision quality disparity lq. To show that cPtO is a metric, it suffices
to show that lq satisfies the four metric properties: non-negativity, identity of indiscernibles, symmetry, and the triangle
inequality. If lq does not individually satisfy these properties, we must demonstrate that the convex combination of dX , dY ,
and lq satisfies these properties collectively under the assumption that αX , αY , αW > 0.

First, lq is clearly non-negative because it is defined as an absolute value. It is symmetric in the convex combination of cPtO

because it is taken as the absolute difference between two decision qualities with fixed true costs.

lg(z, z
′; y′, y′) =

∣∣q(z; y′)− q(z′; z′)
∣∣

=
∣∣q(z′; y′)− q(z; z′)

∣∣
= lg(z

′, z; y′, y′)

Moreover, lq satisfies triangle inequality due to the triangle inequality property of the absolute value.

lg(z1, z2; y1, y2) + lg(z2, z3; y2, y3)

=
∣∣g(z1; y1)− g(z2; y2)

∣∣+ ∣∣g(z2; y2)− g(z3; y3)
∣∣

≤
∣∣g(z1; y1)− g(z2; y2) + g(z2; y2)− g(z3; y3)

∣∣
=

∣∣g(z1; y1)− g(z3; y3)
∣∣

= lg(z1, z3; y1, y3)

Lastly, while lq might not satisfy the identity of indiscernibles in isolation (specifically, lq(y, y′; z, z) = 0 does not
necessarily imply y = y′; meaning two different decisions can lead to the same objective value), cPtO does satisfy this
property for αX , αY , αW > 0. If (x, y, z) = (x′, y′, z′), then lg(z, z

′; y′, y′) =
∣∣g(z; y) − g(z′; y)

∣∣ = 0 because z = z′

implies g(z; y) = g(z′; y) and hence cPtO((x, y, z), (x
′, y′, z′)) = 0. Conversely, if cPtO((x, y, z), (x

′, y′, z′)) = 0, then
dX (x, x′) = 0, dY(y, y′) = 0, and lq(y, y

′; z, z) = 0 because αX , αY , αW > 0. Since dY(y, y
′) = 0 implies y = y′

(because dY is a metric), it follows that w∗(y) = w∗(y′) and hence z = z′.

Therefore, cPtO satisfies the identity of indiscernibles. Consequently, since lq satisfies non-negativity, symmetry, and the
triangle inequality, and since cPtO satisfies the identity of indiscernibles, dOT (·, ·; cPtO) is indeed a valid metric with cPtO

a valid metric on X × Y × Ω.



B PREAMBLE FOR THEOREM 5.5

B.1 VALIDITY ASSUMPTION 5.3

Assumption 5.3 imposes a specific structure on the downstream optimization problem by assuming that the decision quality
function has a bounded rate of change with respect to both the predicted and true cost vectors. This is a reasonable assumption
for certain downstream optimization tasks, as highlighted in the following lemmas.

Lemma B.1. If M(·) is a convex program with a strongly convex objective and constraints with independent derivatives
(Linear Independence Constraint Qualification (LICQ)), Assumption 5.3 holds.

The strong convexity of the objective ensures that the gradient is Lipschitz continuous, while the LICQ guarantees that the
optimal solutions depend continuously on the parameters. By the smoothness of the objective and the continuity of the
optimal solutions, the difference in the decision quality function q between two sets of parameters and their corresponding
optimal solutions can be bounded by a linear combination of the distances between the parameters and the distances between
the optimal solutions.

Lemma B.2. If M(·) has a linear optimization objective with a strongly convex feasible region, Assumption 5.3 holds.

When M(·) has a linear optimization objective and a strongly convex feasible region, the decision quality function q satisfies
the k1, k2-Lipschitz property. The linearity of the objective ensures that changes in the parameters lead to proportional
changes in the objective value, while the strong convexity of the feasible region guarantees that the optimal solutions are
unique and vary smoothly with respect to the parameters. This smooth dependence, combined with the linear structure of the
objective, implies that the difference in q between two sets of parameters and their corresponding optimal solutions can be
bounded by a linear combination of the distances between the parameters and the distances between the optimal solutions.

B.2 LIPSCHITZNESS OF THE DECISION QUALITY DISPARITY FUNCTION

To establish the bound presented in Theorem 5.5, we rely on the fact that lg is k1, k2-Lipschitz under Assumption 5.3. The
following proposition demonstrates that lg indeed satisfies the Lipschitz condition given this assumption.

Proposition B.3. If g, the objective function of the downstream optimization problem, is k1, k2-Lipschitz (Assumption 5.3),
then lg is also k1, k2-Lipschitz.

Proof. ∣∣lg(z, z1; y, y1)− lg(z, z2; y, y2)
∣∣

=
∣∣|g(z; y)− g(z1; y1)| − |g(z; y)− g(z2; y2)|

∣∣
≤

∣∣g(z; y)− g(z1; y1)− g(z; y) + g(z2; y2)
∣∣ (9)

=
∣∣g(z2; y2)− g(z1; y1)

∣∣
=

∣∣g(z2; y2)− g(z1; y2) + g(z1; y2)− g(z1; y1)
∣∣

≤
∣∣g(z2; y2)− g(z1; y2)

∣∣+ ∣∣g(z1; y2)− g(z1; y1)
∣∣ (10)

≤ k1∥z1 − z2∥+ k2∥y1 − y2∥ (11)

Inequalities (9) and (10) are a result of the triangle inequality of the absolute value. Inequality (11) is due to the k1 − k2-
lipschitzness of g.

C PROOF OF THEOREM 5.5

Theorem C.1. Suppose Assumption 5.3 holds. For a feature space X , a label space Y , and a decision set Ω, let
W := X × Y × Ω. Let PS and PT be the source and target distributions over X × Y respectively. For any label-
ing function f : X → Y , let Pf

T and P∗
S be distributions over W given by Pf

T := (x, y, w∗(f(x)))(x,y)∼PT
and

P∗
S := (x, y, w∗(y))(x,y)∼PS

. For a ground cost function of the form

cαPtO((x, y, z), (x
′, y′, z′)) = αXdX (x, x′) + αY dY(y, y

′) + αW lg(z, z
′; y′, y′),



let Π∗ be the coupling that minimizes the OT problem with ground cost cαPtO between Pf
T and P∗

S . Let f̃ be a labeling
function that is ϕ-Lipschitz transferable w.r.t. Π∗. We assume X is bounded by K and f̃ is l-Lipschitz, such that
|f̃(x1)− f̃(x2)| ≤ 2lK = L. Then, for all λ > 0 and αW ∈ (0, 1) such that (λk1 + k2 + 1)αW = 1, and αX = λk1αW

and αY = k2αW , we have with probability at least 1− δ that:

err(f ; qreg,PT ) ≤ err(f̃ ; qreg,PS) + err(f̃ ; qreg,PT ) + k1Lϕ(λ) + (1/αW )dOT (Pf
T ,P

∗
S ; cαPtO)

Proof.

err(f ; qreg,PT )

= E(x,y)∼PT
lg(w

∗(f(x)), w∗(y); y, y)

≤ E(x,y)∼PT
lg(w

∗(f(x)), w∗(f̃(x)); y, y) + E(x,y)∼PT
lg(w

∗(f̃(x)), w∗(y); y, y) (12)

= E(x,y)∼PT
lg(w

∗(f̃(x)), w∗(f(x)); y, y) + E(x,y)∼PT
lg(w

∗(f̃(x)), w∗(y); y, y) (13)

= E(x,y,z)∼Pf
T
lg(w

∗(f̃(x)), z; y, y) + E(x,y)∼PT
lg(w

∗(f̃(x)), w∗(y); y, y) (14)

= E(x,y,z)∼Pf
T
lg(w

∗(f̃(x)), z; y, y)− err(f̃ ; qreg,PS) + err(f̃ ; qreg,PS) + err(f̃ ; qreg,PT )

= E(x,y,z)∼Pf
T
lg(w

∗(f̃(x)), z; y, y)− E(x,y,z)∼P∗
S
lg(w

∗(f̃(x)), z; y, y) + err(f̃ ; qreg,PS) + err(f̃ ; qreg,PT )

≤
∣∣E(x,y,z)∼Pf

T
lg(w

∗(f̃(x)), z; y, y)− E(x,y,z)∼P∗
S
lg(w

∗(f̃(x)), z; y, y)
∣∣+ err(f̃ ; qreg,PS) + err(f̃ ; qreg,PT )

Inequality (12) uses the fact that lg( · ; y, y) satisfies the triangle inequality and line (13) is due to the symmetry of lg( · ; y, y)
for any y ∈ Y . Line (14) comes from the fact that Pf

T := (x, f(x), y)(x,y)∼PT
. We continue by bounding the first term.∣∣E(x,y,z)∼Pf

T
lg(w

∗(f̃(x)), z; y, y)− E(x,y,z)∼P∗
S
lg(w

∗(f̃(x)), z; y, y)
∣∣

=

∣∣∣∣∫
W

lg(w
∗(f̃(x)), z; y, y)(Pf

T (X = x, Y = y, Z = z)− P∗
S(X = x, Y = y, Z = z)) dxdy dz

∣∣∣∣
=

∣∣∣∣∫
W

lg(w
∗(f̃(x)), z; y, y) dΠ∗((xs, ys, zs), (xt, yt, z

f
t ))

∣∣∣∣
≤

∫
W2

∣∣∣lg(z̃t, zft ; yt, yt)− lg(z̃s, zs; ys, ys)
∣∣∣dΠ∗(ws,w

f
t ) (15)

≤
∫
W2

∣∣∣lg(z̃t, zft ; yt, yt)− lg(z̃s, z
f
t ; ys, yt)

∣∣∣+ ∣∣∣lg(z̃s, zft ; ys, yt)− lg(z̃s, zs, ; ys, ys)
∣∣∣dΠ∗(ws,w

f
t ) (16)

≤
∫
W2

k1dY(f̃(xt), f̃(xs)) + k2dY(yt, ys) +
∣∣∣lg(z̃s, zft ; ys, yt)− lg(z̃s, ys; ys, ys)

∣∣∣dΠ∗(ws,w
f
t ) (17)

≤ k1Lϕ(λ) +

∫
W2

λk1dX (xt, xs) + k2dY(yt, ys) +
∣∣∣lg(z̃s, zft ; ys, yt)− lg(z̃s, ys; ys, ys)

∣∣∣ dΠ∗(ws,w
f
t ) (18)

≤ k1Lϕ(λ) +

∫
W2

λk1dX (xt, xs) + k2dY(yt, ys) + lg(z
f
t , zs; ys, ys) dΠ

∗(ws,w
f
t )

From line (15) onwards we take ws := (xs, ys, ys),w
f
t := (xt, y

f
t , yt) and z̃s = w∗(f̃(xs)), z̃t = w∗(f̃(xt)) for ease of

notation. Given a weight αW , we now normalize the last term such that the ground cost function is a convex combination of
dX , dYm and lg .

∫
W2

λk1dX (xt, xs) + k2dY(yt, ys) + lg(z
f
t , zs; ys, ys) dΠ

∗(ws,w
f
t )

=
1

αW

∫
W2

λk1αW dX (xt, xs) + k2αW dY(xt, xs) + αW lg(z
f
t , zs; ys, ys) dΠ

∗(ws,w
f
t )

=
1

αW
dOT (Pf

T ,P
∗
S ; c

α
PtO)



D EXPERIMENTAL SETTINGS DETAILS

D.1 LINEAR MODEL TOP-K Shah et al. [2022]

PtO task description. The Linear Model Top-K setting is a learning task designed to evaluate decision-focused learning
approaches in scenarios where the true relationship between features and outcomes is nonlinear, yet the model used for
prediction is constrained to be linear. Specifically, the objective is to train a linear model to perform top–K selection when
the underlying data is generated by a cubic polynomial function. This controlled setup enables an assessment of how well
decision-focused methods handle model misspecification. The predict-then-optimize (PtO) task in this setting is defined as
follows:

Predict: Given the feature xn ∼ PX , where PX = Unif[−1, 1], of a resource n, the prediction tasks consists of using
a linear model to predict the corresponding utility ŷn, where the true utility yn = p(xn) is a cubic polynomial in xn.
The predictions for N resources are aggregated into a vector ŷ = [ŷ1, . . . , ŷN ], where each element corresponds to the
predicted utility of a resource.

Optimize: The optimization task involves selecting the K out of N resources with the highest utility. This corresponds to
solving the optimization problem M(ŷ) = maxz∈[0,1]N {z · σx(ŷ)} such that ||z||0 = K, where σx is the permutation
that orders ŷ in ascending order of x = [x1, . . . , xN ].

Synthetic distribution shift We introduce synthetic distribution shifts to create a scenario for transfer learning. We modify
the original feature-label distribution P = (Id, p)∗U [−1, 1]. Specifically, for various values of γ ∈ [0, 1.3], we define the
feature-label distributions Pγ = (Id, pγ)∗U [−1, 1] where pγ(xn) = 10(x3

n − γxn), using P0.65 as the target distribution.

Training details We use the implementation from Shah et al. [2022]1 to train models by setting loss="DFL". This
implementation uses an entropy regularized Top-K loss function proposed by Xie et al. [2020] that reframes the Top-K
problem with entropy regularization as an optimal transport problem, enabling end-to-end learning.

D.2 WARCRAFT SHORTEST PATH Vlastelica et al. [2020]

PtO task description. This setting involves finding the minimum-cost path on d× d RGB grid maps from the Warcraft II
tileset dataset, where each pixel represents terrain with an unknown traversal cost. The task is to first predict these costs
from an input image and then determine the shortest path from the top-left to the bottom-right corner based on the predicted
cost map. This benchmark is particularly notable because it involves image inputs, a modality not widely explored in other
shortest-path learning tasks. Following ?, we use 96× 96 RGB images as input, with the shortest path being computed on a
coarser 12× 12 grid representation of the predicted costs.

Predict: Given the feature xn ∈ Rd×d×3, predict the travel cost grid ŷn ∈ Rp×p.

Optimize: Solve a shortest-path problem over the predicted cost grid. Specifically, find the path z that minimizes the total
traversal cost: M(ŷ) = minz∈[0,1]p{z · ŷ} subject to boundary conditions z0,0 = zp,p = 1 and connectivity constraints
ensuring that z represents a valid path from the top-left to the bottom-right corner.

Synthetic distribution shift. The original distribution P , which we treat as the target distribution, is defined over
Rd×d × Rp×p, where d = 96 and p = 12. Here, Rd×d represents the feature space depicting maps, while Rp×p represents
the traveling costs on these maps. We induce a target shift for Pγ by uniformly sampling the costs for different pixel classes
from the same range as P ([0.8, 9.2] for the Warcraft II tileset dataset). Figure 7 illustrates the costs coming from two
different distributions over one same feature while highlighting the different decisions (shortest path) that these costs yield.

Training details. We use pyepo2 implementation with SPO+ loss function on a truncated ResNet-18 consisting of the
first five layers, followed by a final convolutional layer that reduces the number of output channels to one. Finally, we use an
adaptive max-pooling layer to obtain a fixed p× p spatial resolution, allowing for a structured representation of the extracted
features.

1github.com/sanketkshah/LODLs
2github.com/khalil-research/PyEPO

github.com/sanketkshah/LODLs
github.com/khalil-research/PyEPO


Figure 7: Synthetic distribution shift in Warcraft Shortest Path. The white line illustrates the decision, corresponding to the
shortest path, on dataset A (center) and dataset B (right) for a sample with the same features (left map).

D.3 INVENTORY STOCK PROBLEM Donti et al. [2017]

PtO task description. In this problem a company must determine the optimal order quantity z of a product to minimize
costs given a stochastic demand y, which is influenced by observed features x. The cost structure includes both linear and
quadratic costs for the amount of product ordered, as well as different linear and quadratic costs for over-orders [z − y]+

and under-orders [y − z]+. The objective function is:

fstock(y, z) =c0z +
1

2
q0z

2 + cb[y − z]+ +
1

2
qb([y − z]+)

2

+ ch[z − y]+ +
1

2
qh([z − y]+)

2 (19)

where [v]+ ≡ max{v, 0}. In our paper, we use c0 = 30, q0 = 10, cb = 10, qb = 2, ch = 30, qh = 25. For a given probability
model p(y|x; θ), the proxy stochastic programming problem can be formulated as: minimize

z
Ey∼p(y|x;θ) [fstock(y, z)].

To simplify the setting, we assume that the demands are discrete, taking on values d1, . . . , dk with probabilities (conditional
on x) (pθ)i ≡ p (y = di|x; θ). Thus, our stochastic programming problem can be succinctly expressed as a joint quadratic
program:

minimize
z∈R,zb,zh∈Rk

{
c0z +

1

2
q0z

2 +

k∑
i=1

(pθ)i
(
cb(zb)i (10)

+
1

2
qb(zb)

2
i + ch(zh)i +

1

2
qh(zh)

2
i

)}
subject to d− z1 ≤ zb, z1− d ≤ zh, z, zh, zb ≥ 0

Synthetic distribution shift We generate problem instances by randomly sampling x ∈ Rn and then generating p(y|x; θ)
according to p(y|x; θ) ∝ exp

(
(θTx)2

)
. We introduce distribution shifts for both x and y. Specifically, x is sampled from a

Gaussian distribution where the mean is sampled from U [−0.5, 0.5], and θ is also sampled from a Gaussian distribution.

Training details We use the implementation from Donti et al. [2017]3 following their Inventory Stock Problem experi-
ments.

E OTD3 IMPLEMENTATION DETAILS

Our implementation of the OTD3 relies on the POT4 package. The computation of dataset distance involves two main steps:

1. Computing Pairwise Pointwise Distances: We first compute the pairwise distances between samples in the source and
target datasets. This involves calculating distances separately for features, labels, and decisions, weighted according to
the selected component weights (αX , αY , αW ). Feature and label distances are computed using standard metric spaces
(e.g., Euclidean or cosine distance), while decision distances are computed using decision quality disparity.

3github.com/locuslab/e2e-model-learning
4pythonot.github.io/

github.com/locuslab/e2e-model-learning
pythonot.github.io/


2. Solving the Optimal Transport Problem: Given the computed pairwise distances, we compute the dataset distance
using Earth Mover’s Distance (EMD) via POT’s emd solver. EMD finds the exact optimal transport plan, making it
well-suited for capturing true correspondences between source and target datasets without introducing regularization
bias. This approach was computationally feasible in our experiments due to the relatively small dataset sizes.

Additionally, for experiments involving hyperparameter tuning, we evaluate multiple weight combinations on a predefined
grid and select the setting that maximizes correlation with regret transferability.

F ADDITIONAL RESULTS

F.1 SELECTING SOURCE DATASETS FOR TRANSFER LEARNING

In Section 7.1 we analyzed the correlation between dataset distance and transferability in PtO. The plots presented in
Figure 8 show this correlation for the Linear Model TopK setting and the Inventory Stock problem under two weighting
profiles: one where decision-related features are excluded (left) and one where they are included (right). In both settings,
incorporating decisions into the distance metric leads to improved predictability of transfer performance. This effect is more
pronounced in the Linear Model TopK task than in the Inventory Stock problem.

For these settings, we do not perform fine-tuning on the target dataset. Instead, we assess transferability in a zero-shot setting,
where a model trained on the source dataset is directly applied to the target domain without further adaptation. This choice is
motivated by the relative simplicity of the feature spaces involved, which enables a meaningful evaluation of dataset distances
without introducing potential confounding effects from additional training steps. Accordingly, rather than plotting dataset
distance against the relative drop in regret after fine-tuning, we plot it against T (S → T ) = (reg(DS)− reg(DT ))/reg(DT ),
where reg(DS) denotes the decision regret when applying the source-trained model to the target dataset, and reg(DS) is the
regret of a model trained directly on the target.

Figure 8: Distance vs Adaptation. OT distance for the best feature-label and feature-label-decision weighting against regret
transferability.

(a) Warcraft Shortest Path (b) Inventory Stock

Figure 9: Difference in labels against difference in decisions.

To illustrate the relationship between label space
differences dy(y, y

′) and decision space differ-
ences lq(y, y

′, z, z′) in different PtO tasks, we
provide the following visualizations. Figure F.1
shows this correlation for the Inventory Stock
problem, while Figure F.1 presents the same anal-
ysis for the Warcraft domain.
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