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Abstract

Optimal transport aligns samples across distribu-
tions by minimizing the transportation cost be-
tween them, e.g., the geometric distances. Yet,
it ignores coherence structure in the data such as
clusters, does not handle outliers well, and can-
not integrate new data points. To address these
drawbacks, we propose InfoOT, an information-
theoretic extension of optimal transport that max-
imizes the mutual information between domains
while minimizing geometric distances. The re-
sulting objective can still be formulated as a (gen-
eralized) optimal transport problem, and can be
efficiently solved by projected gradient descent.
This formulation yields a new projection method
that is robust to outliers and generalizes to unseen
samples. Empirically, InfoOT improves the qual-
ity of alignments across benchmarks in domain
adaptation, cross-domain retrieval, and single-
cell alignment. The code is available at https:
//github.com/chingyaoc/InfoOT.

1. Introduction
Optimal Transport (OT) provides a general framework with
a strong theoretical foundation to compare probability dis-
tributions based on the geometry of their underlying spaces
(Villani, 2009). Besides its fundamental role in mathematics,
OT has increasingly received attention in machine learning
due to its wide range of applications in domain adapta-
tion (Courty et al., 2017; Redko et al., 2019; Xu et al.,
2020), generative modeling (Arjovsky et al., 2017; Bous-
quet et al., 2017), representation learning (Ozair et al., 2019;
Chuang et al., 2022), and generalization bounds (Chuang
et al., 2021). The development of efficient algorithms (Cu-
turi, 2013; Peyré et al., 2016) has significantly accelerated
the adoption of optimal transport in these applications.
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Computationally, the discrete formulation of OT seeks a
matrix, also called transportation plan, that minimizes the
total geometric transportation cost between two sets of sam-
ples drawn from the source and target distributions. The
transportation plan implicitly defines (soft) correspondences
across these samples, but provides no mechanism to relate
newly-drawn data points. Aligning these requires solving a
new OT problem from scratch. This limits the applicability
of OT, e.g., to streaming settings where the samples arrive in
sequence, or very large datasets where we can only solve OT
on a subset. In this case, the current solution cannot be used
on future data. To overcome this fundamental constraint,
a line of work proposes to directly estimate a mapping,
the pushforward from source to target, that minimizes the
transportation cost (Perrot et al., 2016; Seguy et al., 2017).
Nevertheless, the resulting mapping is highly dependent
on the complexity of the mapping function (Galanti et al.,
2021).

OT could also yield alignments that ignore the intrinsic
coherence structure of the data. In particular, by relying
exclusively on pairwise geometric distances, two nearby
source samples could be mapped to disparate target samples,
as in Figure 1, which is undesirable in some settings. For
instance, when applying OT for domain adaptation, source
samples with the same class should ideally be mapped to
similar target samples. To mitigate this, prior work has
sought to impose structural priors on the OT objective, e.g.,
via submodular cost functions (Alvarez-Melis et al., 2018)
or a Gromov-Wasserstein regularizer (Vayer et al., 2018b;a).
However, these methods still suffer from sensitivity to out-
liers (Mukherjee et al., 2021) and imbalanced data (Hsu
et al., 2015; Tan et al., 2020).

This work presents Information Maximization Optimal
Transport (InfoOT), an information-theoretic extension of
the optimal transport problem that generalizes the usual
formulation by infusing it with global structure in form
of mutual information. In particular, InfoOT seeks align-
ments that maximize mutual information, an information-
theoretic measure of dependence, between domains. To do
so, we treat the pairs selected by the transportation plan as
samples drawn from the joint distribution and estimate the
mutual information with kernel density estimation based
on the paired samples (Moon et al., 1995). Interestingly,
this results in an OT problem where the cost is the log ra-
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Figure 1: Illustration of InfoOT on 2D point cloud. Compared to classic OT, InfoOT preserves the cluster structure, where the source
points from the same cluster are mapped to the same target cluster. For projection estimation (dashed lines), the new conditional projection
improves over barycentric projection with better outlier robustness and out-of-sample generalization.

tio between the estimated joint and marginal distributions
f XY (x; y)=(f X (x)f Y (y)) . Empirically, we show that using
a cost combining mutual information with geometric dis-
tances yields better alignments across different applications.
Moreover, akin to Gromov-Wasserstein (Mémoli, 2011), the
mutual information estimator only relies on intra-domain
distances, which —unlike the standard OT formulation—
makes it suitable for aligning distributions whose supports
lie in different metric spaces, e.g., supports with different
modalities or dimensionality (Alvarez-Melis & Fusi, 2020;
Demetci et al., 2020).

By estimating a joint density, InfoOT naturally yields a
novel method for out-of-sample transportation by taking an
expectation over the estimated densities conditioned on the
source samples, which we refer to asconditional projection.
Typically, samples are mapped via a barycentric projection
(Ferradans et al., 2014; Flamary et al., 2016), which corre-
sponds to the weighted average of target samples, where
the weights are determined by the transportation plan. The
barycentric projection inherits the disadvantages of standard
OT: sensitivity to outliers and failing to generalize to new
samples. In contrast, our proposed conditional projection is
robust to outliers and cross-domain class-imbalanced data
(Figure 1 and 3) by averaging over samples with importance
sampling, where the weight is, again, the ratio between the
estimated joint and marginal densities. Furthermore, this
projection is well-de�ned even for unseen samples, which
widens the applicability of OT in streaming or large-scale
settings where solving OT for the complete dataset is pro-
hibitive.

In short, this work makes the following contributions:

• We propose InfoOT, an information-theoretic extension
to the optimal transport that regularizes alignments by
maximizing mutual information;

• We develop conditional projection, a new projection
method for OT that is robust to outliers and class imbal-
ance in data, and generalizes to new samples;

• We evaluate our approach via experiments in domain
adaptation, cross-domain retrieval, and single-cell align-
ment.

2. Related Works

Optimal Transport Optimal transport provides an ele-
gant framework to compare and align distributions. The
discrete formulation, also called Earth Mover's Distance
(EMD), �nds an optimal coupling between empirical sam-
ples by solving a linear programming problem (Bonneel
et al., 2011). To speed up the computation, Cuturi (2013)
propose the Sinkhorn distance, an entropic regularized ver-
sion of EMD that can be solved more ef�ciently via the
Sinkhorn-Knopp algorithm (Knight, 2008). Compared to
EMD, this regularized formulation typically yields denser
transportation plans, where samples can be associated with
multiple target points. Various extensions of OT have been
proposed to impose stronger priors, e.g., Alvarez-Melis et al.
(2018) incorporate additional structure by leveraging a sub-
modular transportation cost, while Flamary et al. (2016)
induce class coherence through a group-sparsity regularizer.
The Gromov-Wasserstein (GW) distance (Mémoli, 2011) is
a variant of OT in which the transportation cost is de�ned
upon intra-domain pairwise distances. Therefore, GW has
been adopted to align `incomparable spaces' (Alvarez-Melis
& Jaakkola, 2018; Demetci et al., 2020) as the source and tar-
get domains do not need to lie in the same space. Since the
GW objective is no longer a linear program, it is typically
optimized using projected gradient descent (Peyré et al.,
2016; Solomon et al., 2016). The Fused-GW, which com-
bines the OT and GW objectives, was proposed by Vayer
et al. (2018a) to measure graph distances.

Mutual Information and OT The proposed InfoOT ex-
tends the standard OT formulation by maximizing a ker-
nel density estimated mutual information. Recent works
(Bai et al., 2020; Khan & Zhang, 2022) also explore the
connection between OT and information theory. Liu et al.
(2021) consider a semi-supervised setting for estimating a
variant of mutual information, where the unpaired samples
are leveraged to minimize the estimation error. Ozair et al.
(2019) replace the KL divergence in mutual information
with Wasserstein distance and develop a loss function for
representation learning. In comparison, the objective of
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InfoOT is to seek alignments that maximize the mutual in-
formation while being fully unsupervised by parameterizing
the joint densities with the transportation plan. Another line
of work also combines OT with kernel density estimation
(Canas & Rosasco, 2012; Mokrov et al., 2021), but focuses
on different applications.

3. Background on OT and KDE

Optimal Transport Let f x i gn
i =1 2 X n andf yi gm

i =1 2
Ym be the empirical samples andC 2 Rn � m be the
transportation cost for each pair, e.g,. Euclidean cost
Cij = kx i � yj k. Given two sets of weights over sam-
plesp 2 Rn

+ andq 2 Rm
+ where

P n
i =1 p i =

P m
i =1 q i = 1 ,

and a cost matrixC, Kantorovich's formulation of optimal
transport solves

min
� 2 �( p ;q )

h� ; Ci ; where

�( p; q) = f � 2 Rn � m
+ j
 1m = p; 
 T 1n = qg:

The�( p; q) is a set of transportation plans that satis�es the
�ow constraint. In practice, the Sinkhorn distance (Cuturi,
2013), an entropic regularized version of OT, can be solved
more ef�ciently via the Sinkhorn-Knopp algorithm. In par-
ticular, the Sinkhorn distance solvesmin � 2 �( p ;q ) h� ; Ci �
�H (�) , whereH (�) = �

P
i;j � ij log � ij is the entropic

regularizer that smooths the transportation plan.

Kernel Density Estimation Kernel Density Estimation
(KDE) is a non-parametric density estimation method based
on kernel smoothing (Parzen, 1962; Rosenblatt, 1956). Here,
we consider a generalized KDE for metric spaces(X ; dX )
and(Y; dY ) (Li et al., 2020; Pelletier, 2005). In particular,
given a paired datasetf x i ; yi gn

i =1 2 fX n ; Yn g sampled
i.i.d. from an unknown joint densityf XY and a kernel
functionK : R ! R, KDE estimates the marginals and the
joint density as

f̂ X (x) =
1
n

X

i

K h1 (dX (x; x i )) ; (1)

f̂ XY (x; y) =
1
n

X

i

K h1 (dX (x; x i )) K h2 (dY (y; yi )) ;

whereK h (t) = K ( t
h )=Zh and the normalizing constantZh

makes equation 1 integrate to one. The bandwidth parame-
terh controls the smoothness of the estimated densities. In
this work, we do not need to estimate the normalizing con-
stant as only the ratio between joint and marginal densities
f̂ XY (x; y)=(f̂ X (x)f̂ Y (y)) is considered while estimating
the mutual information. For all the presented experiments,
we adopt the Gaussian kernel:

K h (dX (x; x 0)) =
1

Zh
exp

�
�

dX (x; x 0)2

2h2� 2

�
;

where� 2 controls the variance. The Gaussian kernel has
been successfully adopted for KDE even in non-Euclidean
spaces (Li et al., 2020; Said et al., 2017), and we found it
to work well in our experiments. For simplicity, we also set
h1 = h2 = h for all the experiments. Importantly, as opposed
to neural-based density estimators such as (Belghazi et al.,
2018b), KDE yields a convenient closed-form algorithm as
we show next. We also found KDE works well empirically
in high-dimensional settings when combined with OT.

4. Information Maximizing OT

Optimal transport captures the geometry of the underlying
space through the ground metric in its objective. Additional
information is not directly captured in this metric —such
as coherence structure— will therefore be ignored when
solving the problem. This is undesirable in applications
where this additional structure matters, for instance in do-
main adaptation, where class coherence is crucial. As a
concrete example, the cluster structure in the dataset in Fig-
ure 1 is ignored by classic OT. Intuitively, the reason for this
issue is that the classic OT is toolocal: the transportation
cost considers each sample separately, without respecting
coherence across close-by samples. Next, we show that mu-
tual information estimated with KDE can introduce global
structure into OT maps.

4.1. Measuring Global Structure with Mutual
Information

Formally, mutual information measures the statistical de-
pendence of two random variablesX; Y :

I (X; Y ) =
ZZ

Y�X
f X;Y (x; y) log

�
f XY (x; y)

f X (x)f Y (y)

�
dxdy

(2)

wheref XY is joint density andf X ; f Y are marginal proba-
bility density functions. For paired datasets, various mutual
information estimators have been de�ned (Belghazi et al.,
2018a; Moon et al., 1995; Poole et al., 2019). In contrast,
we are interested in the inverse: givenunpairedsamples
f x i gn

i =1 ; f yj gm
i =1 , can we �nd alignments that maximize

the mutual information?

Discrete v.s. Continuous. An immediate idea is to treat
the discrete transportation plan� as the joint distribution
betweenX andY , and write the mutual information asP

i;j � ij log(nm� ij ) = log( nm) � H (�) . In this case,
maximizing mutual information would be equivalent to min-
imizing the entropic regularizerH (�) introduced by (Cuturi,
2013). For a �nite set of samples, this mutual information
estimator is trivially maximized foranyone-to-one mapping
as thenH (�) = 0 . Figure 2 (a) illustrates two one-to-one
mappings� a and� b between points sampled from multi-
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Figure 2: Measuring Structure with Mutual information. (a)
The� a and� b are two one-to-one mappings where� a preserves
the cluster structure and� b is a random permutation; (b) The
estimated joint density of� a is more concentrated than the one of
� b, which also leads to higher mutual information under KDE.

mode Gaussian distributions, where� a preserves the cluster
structure and� b is simply a random permutation. They
both maximize the mutual information estimate above, yet
� a is a better alignment with high coherence. In short, di-
rectly using the transportation plan estimated from �nite
samples as the joint distribution to estimate mutual informa-
tion between continuous random variables is problematic.
In contrast, joint distributions estimated with KDE tend to
be smoother, such as� a in Figure 2 (b). This suggests
that KDE may lead to a better objective for the alignment
problem.

4.2.InfoOT: Maximizing Mutual Information with KDE

Instead of directly interpreting the OT plan as the joint
distribution for the mutual information, we use it to inform
the de�nition of a different one. In particular, we treat� ij

asthe weight of pair(x i ; yj ) within the empirical samples
drawn from the unknown joint distribution with densityf XY .
Intuitively, � ij de�nes what empirical samples we obtain by
sampling from the joint distribution. Given a transportation
plan � , the kernelized joint density in equation 1 can be
rewritten as

f̂ � (x; y) =
X

i

X

j

� ij K h (dX (x; x i )) K h (dY (y; yj )) :

(3)

The1=n factor is dropped as the plan� is already normal-
ized (

P
ij � ij = 1 ). Speci�cally, we replace the prespeci-

�ed paired samples in equation 1 with the ones selected by

the transportation plan� .

De�nition 4.1 (Kernelized Mutual Information). The KDE
estimated mutual information reads

Î � (X; Y ) =
X

i;j

� ij log
f̂ � (x i ; yj )

f̂ (x i )f̂ (yj )

=
X

i;j

� ij log

nm
P

k;l
� kl K h (dX (x i ; xk )) K h (dY (yj ; yl ))

P
k K h (dX (x i ; xk )) �

P
l K h (dY (yj ; yl ))

:

The estimation has two folds: (1) approximating the joint
distribution with KDE, and (2) estimating the integral in
equation 2 with paired empirical sample(x i ; yj ) weighted
by � ij . The normalizing constantZh in equation (1) cancels
out while calculating the ratio between joint and marginal
probability densities. To maximize the empirical mutual
informationÎ � (X; Y ), the plan has to map close-by points
i; k to close-by pointsj; l . Maximizing this information can
be interpreted as an optimal transport problem:

max
� 2 �( p ;q )

Î � (X; Y ) = min
� 2 �( p ;q )

X

i;j

� ij � log

 
f̂ (x i )f̂ (yj )

f̂ � (x i ; yj )

!

:

(4)

The optimization problem above will be refered to asIn-
foOT. Instead of pairwise (Euclidean) distances, the trans-
portation cost is now the log ratio between the estimated
marginal and joint densities. The following lemma illus-
trates the asymptotic relation between the kernel estimated
mutual information and the entropic regularizer.

Lemma 4.2. Whenh ! 0 andK (�) is the Gaussian kernel,
we haveÎ � (X; Y ) ! � H (�) + log( nm).

When the bandwidthh goes to zero, the estimated density
is the sum of delta functions centered at the samples, and
the estimated mutual information degenerates back to the
standard entropic regularizer (Cuturi, 2013).

Note that the formulation of InfoOT does not require the
support ofX andY to be comparable. Similar to Gromov-
Wasserstein (Ḿemoli, 2011), InfoOT only relies on intra-
domain distances, which makes it an appropriate objective
for aligning distributions when the supports do not lie in the
same metric space, e.g., supports with different modalities
or dimensionalities, as section 6.4 shows.

Fused InfoOT: Incorporating the Geometry. When the
geometry between domains is informative, the mutual infor-
mation can act as a regularizer that re�nes the alignment.
Along with a weighting parameter� , we de�ne the Fused
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