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Abstract

Optimal transport aligns samples across distribu-
tions by minimizing the transportation cost be-
tween them, e.g., the geometric distances. Yet,
it ignores coherence structure in the data such as
clusters, does not handle outliers well, and can-
not integrate new data points. To address these
drawbacks, we propose InfoOT, an information-
theoretic extension of optimal transport that max-
imizes the mutual information between domains
while minimizing geometric distances. The re-
sulting objective can still be formulated as a (gen-
eralized) optimal transport problem, and can be
efficiently solved by projected gradient descent.
This formulation yields a new projection method
that is robust to outliers and generalizes to unseen
samples. Empirically, InfoOT improves the qual-
ity of alignments across benchmarks in domain
adaptation, cross-domain retrieval, and single-
cell alignment. The code is available at https:
//github.com/chingyaoc/InfoOT.

1. Introduction
Optimal Transport (OT) provides a general framework with
a strong theoretical foundation to compare probability dis-
tributions based on the geometry of their underlying spaces
(Villani, 2009). Besides its fundamental role in mathematics,
OT has increasingly received attention in machine learning
due to its wide range of applications in domain adapta-
tion (Courty et al., 2017; Redko et al., 2019; Xu et al.,
2020), generative modeling (Arjovsky et al., 2017; Bous-
quet et al., 2017), representation learning (Ozair et al., 2019;
Chuang et al., 2022), and generalization bounds (Chuang
et al., 2021). The development of efficient algorithms (Cu-
turi, 2013; Peyré et al., 2016) has significantly accelerated
the adoption of optimal transport in these applications.
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Computationally, the discrete formulation of OT seeks a
matrix, also called transportation plan, that minimizes the
total geometric transportation cost between two sets of sam-
ples drawn from the source and target distributions. The
transportation plan implicitly defines (soft) correspondences
across these samples, but provides no mechanism to relate
newly-drawn data points. Aligning these requires solving a
new OT problem from scratch. This limits the applicability
of OT, e.g., to streaming settings where the samples arrive in
sequence, or very large datasets where we can only solve OT
on a subset. In this case, the current solution cannot be used
on future data. To overcome this fundamental constraint,
a line of work proposes to directly estimate a mapping,
the pushforward from source to target, that minimizes the
transportation cost (Perrot et al., 2016; Seguy et al., 2017).
Nevertheless, the resulting mapping is highly dependent
on the complexity of the mapping function (Galanti et al.,
2021).

OT could also yield alignments that ignore the intrinsic
coherence structure of the data. In particular, by relying
exclusively on pairwise geometric distances, two nearby
source samples could be mapped to disparate target samples,
as in Figure 1, which is undesirable in some settings. For
instance, when applying OT for domain adaptation, source
samples with the same class should ideally be mapped to
similar target samples. To mitigate this, prior work has
sought to impose structural priors on the OT objective, e.g.,
via submodular cost functions (Alvarez-Melis et al., 2018)
or a Gromov-Wasserstein regularizer (Vayer et al., 2018b;a).
However, these methods still suffer from sensitivity to out-
liers (Mukherjee et al., 2021) and imbalanced data (Hsu
et al., 2015; Tan et al., 2020).

This work presents Information Maximization Optimal
Transport (InfoOT), an information-theoretic extension of
the optimal transport problem that generalizes the usual
formulation by infusing it with global structure in form
of mutual information. In particular, InfoOT seeks align-
ments that maximize mutual information, an information-
theoretic measure of dependence, between domains. To do
so, we treat the pairs selected by the transportation plan as
samples drawn from the joint distribution and estimate the
mutual information with kernel density estimation based
on the paired samples (Moon et al., 1995). Interestingly,
this results in an OT problem where the cost is the log ra-
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Figure 1: Illustration of InfoOT on 2D point cloud. Compared to classic OT, InfoOT preserves the cluster structure, where the source
points from the same cluster are mapped to the same target cluster. For projection estimation (dashed lines), the new conditional projection
improves over barycentric projection with better outlier robustness and out-of-sample generalization.

tio between the estimated joint and marginal distributions
fXY (x, y)/(fX(x)fY (y)). Empirically, we show that using
a cost combining mutual information with geometric dis-
tances yields better alignments across different applications.
Moreover, akin to Gromov-Wasserstein (Mémoli, 2011), the
mutual information estimator only relies on intra-domain
distances, which —unlike the standard OT formulation—
makes it suitable for aligning distributions whose supports
lie in different metric spaces, e.g., supports with different
modalities or dimensionality (Alvarez-Melis & Fusi, 2020;
Demetci et al., 2020).

By estimating a joint density, InfoOT naturally yields a
novel method for out-of-sample transportation by taking an
expectation over the estimated densities conditioned on the
source samples, which we refer to as conditional projection.
Typically, samples are mapped via a barycentric projection
(Ferradans et al., 2014; Flamary et al., 2016), which corre-
sponds to the weighted average of target samples, where
the weights are determined by the transportation plan. The
barycentric projection inherits the disadvantages of standard
OT: sensitivity to outliers and failing to generalize to new
samples. In contrast, our proposed conditional projection is
robust to outliers and cross-domain class-imbalanced data
(Figure 1 and 3) by averaging over samples with importance
sampling, where the weight is, again, the ratio between the
estimated joint and marginal densities. Furthermore, this
projection is well-defined even for unseen samples, which
widens the applicability of OT in streaming or large-scale
settings where solving OT for the complete dataset is pro-
hibitive.

In short, this work makes the following contributions:
• We propose InfoOT, an information-theoretic extension

to the optimal transport that regularizes alignments by
maximizing mutual information;

• We develop conditional projection, a new projection
method for OT that is robust to outliers and class imbal-
ance in data, and generalizes to new samples;

• We evaluate our approach via experiments in domain
adaptation, cross-domain retrieval, and single-cell align-
ment.

2. Related Works
Optimal Transport Optimal transport provides an ele-
gant framework to compare and align distributions. The
discrete formulation, also called Earth Mover’s Distance
(EMD), finds an optimal coupling between empirical sam-
ples by solving a linear programming problem (Bonneel
et al., 2011). To speed up the computation, Cuturi (2013)
propose the Sinkhorn distance, an entropic regularized ver-
sion of EMD that can be solved more efficiently via the
Sinkhorn-Knopp algorithm (Knight, 2008). Compared to
EMD, this regularized formulation typically yields denser
transportation plans, where samples can be associated with
multiple target points. Various extensions of OT have been
proposed to impose stronger priors, e.g., Alvarez-Melis et al.
(2018) incorporate additional structure by leveraging a sub-
modular transportation cost, while Flamary et al. (2016)
induce class coherence through a group-sparsity regularizer.
The Gromov-Wasserstein (GW) distance (Mémoli, 2011) is
a variant of OT in which the transportation cost is defined
upon intra-domain pairwise distances. Therefore, GW has
been adopted to align ‘incomparable spaces’ (Alvarez-Melis
& Jaakkola, 2018; Demetci et al., 2020) as the source and tar-
get domains do not need to lie in the same space. Since the
GW objective is no longer a linear program, it is typically
optimized using projected gradient descent (Peyré et al.,
2016; Solomon et al., 2016). The Fused-GW, which com-
bines the OT and GW objectives, was proposed by Vayer
et al. (2018a) to measure graph distances.

Mutual Information and OT The proposed InfoOT ex-
tends the standard OT formulation by maximizing a ker-
nel density estimated mutual information. Recent works
(Bai et al., 2020; Khan & Zhang, 2022) also explore the
connection between OT and information theory. Liu et al.
(2021) consider a semi-supervised setting for estimating a
variant of mutual information, where the unpaired samples
are leveraged to minimize the estimation error. Ozair et al.
(2019) replace the KL divergence in mutual information
with Wasserstein distance and develop a loss function for
representation learning. In comparison, the objective of
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InfoOT is to seek alignments that maximize the mutual in-
formation while being fully unsupervised by parameterizing
the joint densities with the transportation plan. Another line
of work also combines OT with kernel density estimation
(Canas & Rosasco, 2012; Mokrov et al., 2021), but focuses
on different applications.

3. Background on OT and KDE
Optimal Transport Let {xi}ni=1 ∈ Xn and {yi}mi=1 ∈
Ym be the empirical samples and C ∈ Rn×m be the
transportation cost for each pair, e.g,. Euclidean cost
Cij = ∥xi − yj∥. Given two sets of weights over sam-
ples p ∈ Rn

+ and q ∈ Rm
+ where

∑n
i=1 pi =

∑m
i=1 qi = 1,

and a cost matrix C, Kantorovich’s formulation of optimal
transport solves

min
Γ∈Π(p,q)

⟨Γ, C⟩ ,where

Π(p,q) = {Γ ∈ Rn×m
+ |γ1m = p, γT1n = q}.

The Π(p,q) is a set of transportation plans that satisfies the
flow constraint. In practice, the Sinkhorn distance (Cuturi,
2013), an entropic regularized version of OT, can be solved
more efficiently via the Sinkhorn-Knopp algorithm. In par-
ticular, the Sinkhorn distance solves minΓ∈Π(p,q)⟨Γ, C⟩ −
ϵH(Γ), where H(Γ) = −

∑
i,j Γij log Γij is the entropic

regularizer that smooths the transportation plan.

Kernel Density Estimation Kernel Density Estimation
(KDE) is a non-parametric density estimation method based
on kernel smoothing (Parzen, 1962; Rosenblatt, 1956). Here,
we consider a generalized KDE for metric spaces (X , dX )
and (Y, dY) (Li et al., 2020; Pelletier, 2005). In particular,
given a paired dataset {xi, yi}ni=1 ∈ {Xn,Yn} sampled
i.i.d. from an unknown joint density fXY and a kernel
function K : R→ R, KDE estimates the marginals and the
joint density as

f̂X(x) =
1

n

∑
i

Kh1
(dX (x, xi)) ; (1)

f̂XY (x, y) =
1

n

∑
i

Kh1
(dX (x, xi))Kh2

(dY(y, yi)) ,

where Kh(t) = K( t
h )/Zh and the normalizing constant Zh

makes equation 1 integrate to one. The bandwidth parame-
ter h controls the smoothness of the estimated densities. In
this work, we do not need to estimate the normalizing con-
stant as only the ratio between joint and marginal densities
f̂XY (x, y)/(f̂X(x)f̂Y (y)) is considered while estimating
the mutual information. For all the presented experiments,
we adopt the Gaussian kernel:

Kh (dX (x, x′)) =
1

Zh
exp

(
−dX (x, x′)2

2h2σ2

)
,

where σ2 controls the variance. The Gaussian kernel has
been successfully adopted for KDE even in non-Euclidean
spaces (Li et al., 2020; Said et al., 2017), and we found it
to work well in our experiments. For simplicity, we also set
h1=h2=h for all the experiments. Importantly, as opposed
to neural-based density estimators such as (Belghazi et al.,
2018b), KDE yields a convenient closed-form algorithm as
we show next. We also found KDE works well empirically
in high-dimensional settings when combined with OT.

4. Information Maximizing OT
Optimal transport captures the geometry of the underlying
space through the ground metric in its objective. Additional
information is not directly captured in this metric —such
as coherence structure— will therefore be ignored when
solving the problem. This is undesirable in applications
where this additional structure matters, for instance in do-
main adaptation, where class coherence is crucial. As a
concrete example, the cluster structure in the dataset in Fig-
ure 1 is ignored by classic OT. Intuitively, the reason for this
issue is that the classic OT is too local: the transportation
cost considers each sample separately, without respecting
coherence across close-by samples. Next, we show that mu-
tual information estimated with KDE can introduce global
structure into OT maps.

4.1. Measuring Global Structure with Mutual
Information

Formally, mutual information measures the statistical de-
pendence of two random variables X,Y :

I(X,Y ) =

∫∫
Y×X

fX,Y (x, y) log

(
fXY (x, y)

fX(x)fY (y)

)
dxdy

(2)

where fXY is joint density and fX , fY are marginal proba-
bility density functions. For paired datasets, various mutual
information estimators have been defined (Belghazi et al.,
2018a; Moon et al., 1995; Poole et al., 2019). In contrast,
we are interested in the inverse: given unpaired samples
{xi}ni=1, {yj}mi=1, can we find alignments that maximize
the mutual information?

Discrete v.s. Continuous. An immediate idea is to treat
the discrete transportation plan Γ as the joint distribution
between X and Y , and write the mutual information as∑

i,j Γij log(nmΓij) = log(nm) − H(Γ). In this case,
maximizing mutual information would be equivalent to min-
imizing the entropic regularizer H(Γ) introduced by (Cuturi,
2013). For a finite set of samples, this mutual information
estimator is trivially maximized for any one-to-one mapping
as then H(Γ) = 0. Figure 2 (a) illustrates two one-to-one
mappings Γa and Γb between points sampled from multi-
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Plan Γa Plan Γb

Joint Density of Γa Joint Density of Γb

High MI Low MI

(a) One-to-one Mappings

(b) Joint Density estimated with KDE

Figure 2: Measuring Structure with Mutual information. (a)
The Γa and Γb are two one-to-one mappings where Γa preserves
the cluster structure and Γb is a random permutation; (b) The
estimated joint density of Γa is more concentrated than the one of
Γb, which also leads to higher mutual information under KDE.

mode Gaussian distributions, where Γa preserves the cluster
structure and Γb is simply a random permutation. They
both maximize the mutual information estimate above, yet
Γa is a better alignment with high coherence. In short, di-
rectly using the transportation plan estimated from finite
samples as the joint distribution to estimate mutual informa-
tion between continuous random variables is problematic.
In contrast, joint distributions estimated with KDE tend to
be smoother, such as Γa in Figure 2 (b). This suggests
that KDE may lead to a better objective for the alignment
problem.

4.2. InfoOT: Maximizing Mutual Information with KDE

Instead of directly interpreting the OT plan as the joint
distribution for the mutual information, we use it to inform
the definition of a different one. In particular, we treat Γij

as the weight of pair (xi, yj) within the empirical samples
drawn from the unknown joint distribution with density fXY .
Intuitively, Γij defines what empirical samples we obtain by
sampling from the joint distribution. Given a transportation
plan Γ, the kernelized joint density in equation 1 can be
rewritten as

f̂Γ(x, y) =
∑
i

∑
j

ΓijKh (dX (x, xi))Kh (dY(y, yj)) .

(3)

The 1/n factor is dropped as the plan Γ is already normal-
ized (

∑
ij Γij = 1). Specifically, we replace the prespeci-

fied paired samples in equation 1 with the ones selected by

the transportation plan Γ.

Definition 4.1 (Kernelized Mutual Information). The KDE
estimated mutual information reads

ÎΓ(X,Y ) =
∑
i,j

Γij log
f̂Γ(xi, yj)

f̂(xi)f̂(yj)

=
∑
i,j

Γij log

nm
∑
k,l

ΓklKh (dX (xi, xk))Kh (dY(yj , yl))∑
k Kh (dX (xi, xk)) ·

∑
l Kh (dY(yj , yl))

.

The estimation has two folds: (1) approximating the joint
distribution with KDE, and (2) estimating the integral in
equation 2 with paired empirical sample (xi, yj) weighted
by Γij . The normalizing constant Zh in equation (1) cancels
out while calculating the ratio between joint and marginal
probability densities. To maximize the empirical mutual
information ÎΓ(X,Y ), the plan has to map close-by points
i, k to close-by points j, l. Maximizing this information can
be interpreted as an optimal transport problem:

max
Γ∈Π(p,q)

ÎΓ(X,Y ) = min
Γ∈Π(p,q)

∑
i,j

Γij · log

(
f̂(xi)f̂(yj)

f̂Γ(xi, yj)

)
.

(4)

The optimization problem above will be refered to as In-
foOT. Instead of pairwise (Euclidean) distances, the trans-
portation cost is now the log ratio between the estimated
marginal and joint densities. The following lemma illus-
trates the asymptotic relation between the kernel estimated
mutual information and the entropic regularizer.

Lemma 4.2. When h→ 0 and K(·) is the Gaussian kernel,
we have ÎΓ(X,Y )→ −H(Γ) + log(nm).

When the bandwidth h goes to zero, the estimated density
is the sum of delta functions centered at the samples, and
the estimated mutual information degenerates back to the
standard entropic regularizer (Cuturi, 2013).

Note that the formulation of InfoOT does not require the
support of X and Y to be comparable. Similar to Gromov-
Wasserstein (Mémoli, 2011), InfoOT only relies on intra-
domain distances, which makes it an appropriate objective
for aligning distributions when the supports do not lie in the
same metric space, e.g., supports with different modalities
or dimensionalities, as section 6.4 shows.

Fused InfoOT: Incorporating the Geometry. When the
geometry between domains is informative, the mutual infor-
mation can act as a regularizer that refines the alignment.
Along with a weighting parameter λ, we define the Fused

4



InfoOT: Information Maximizing Optimal Transport

InfoOT as

min
Γ∈Π(p,q)

⟨Γ, C⟩ − λÎΓ(X,Y )

= min
Γ∈Π(p,q)

∑
i,j

Γij ·

(
Cij + λ · log

(
f̂(xi)f̂(yj)

f̂Γ(xi, yj)

))
.

The transportation cost becomes the weighted sum between
the pairwise distances C and the log ratio of joint and
marginals densities. As Figure 1 illustrates, the mutual
information regularizer excludes alignments that destroy the
cluster structure while minimizing the pairwise distances.
Practically, we found F-InfoOT suitable for general OT ap-
plications such as unsupervised domain adaptation (Flamary
et al., 2016) and color transfer (Ferradans et al., 2014) where
the geometry between source and target is informative.

4.3. Numerical Optimization

As the transportation cost is dependent on Γ, the objective
is no longer linear in Γ and cannot be solved with linear
programming. Instead, we adopt the projected gradient
descent introduced in (Peyré et al., 2016). In particular,
Benamou et al. (2015) show that the projection can be done
by simply solving the Sinkhorn distance (Cuturi, 2013) if
the non-linear objective is augmented with the entropic
regularizer H(Γ). For instance, we can augment F-InfoOT
as follows:

min
Γ∈Π(p,q)

⟨Γ, C⟩ − λÎΓ(X,Y )− ϵH(Γ).

In this case, the update of projected gradient descent reads

Γt+1 ← argmin
Γ∈Π(p,q)

〈
Γ, C − λ∇ΓÎΓt(X,Y )

〉
− ϵH(Γ).

(5)

The update is done by solving the sinkhorn distance (Cuturi,
2013), where the cost function is the gradient to the objective
of F-InfoOT. We provide a detailed derivation of (5) in
Appendix A.2.

Matrix Computation Practically, the optimization can
be efficiently computed with matrix multiplications. The
gradient with respect to the transportation plan Γ is

∂ÎΓ(X,Y )

∂Γij
= log

(
f̂Γ(xi, yj)

f̂(xi)f̂(yj)

)

+
∑
k,l

Γkl
Kh (dX (xi, xk))Kh (dY(yj , yl))

f̂Γ(xk, yl)
.

Let KX and KY be the kernel matrices where (KX)ij =
Kh (dX (xi − xj)), (KY )ij = Kh ((dY(yi − yj)). The

gradient has the following matrix form:

∇ΓÎΓ(X,Y ) = log
(
KXΓKT

Y ⊘MXMT
Y

)
+KX

(
Γ⊘KXΓKT

Y

)
KT

Y

where (MX)i = f̂(xi), (MY )i = f̂(yi) are the marginal
density vectors and ⊘ denotes element-wise division. The
gradient can be computed with matrix multiplications in
O(n2m+ nm2).

5. Conditional Projection with InfoOT
Many applications of optimal transport involve mapping
source points to a target domain. For instance, when ap-
plying OT for domain adaptation, the classifiers are trained
on projected source samples that are mapped to the target
domain. When X = Y , given a transportation plan Γ, a
barycentric projection maps source samples to the target
domain by minimizing the weighted cost to target samples
(Flamary et al., 2016; Perrot et al., 2016). The mapping
is equivalent to the weighted average of the target samples
when the cost function is the squared Euclidean distance
c(x, y) = ∥x− y∥2:

xi 7→ argmin
y∈Y

m∑
j=1

Γij∥y − yj∥2 =
1∑m

j=1 Γij

m∑
j=1

Γijyj .

(6)

Despite its simplicity, the barycentric projection fails when
(a) aligning data with outliers, (b) imbalanced data, and
(c) mapping new samples. For instance, if sample xi is
mostly mapped to an outlier yj , then its projection will be
close to yj . Similar problems occur when applying OT
for domain adaptation. If the size of a same class differs
between domains, false alignments would emerge due to the
flow constraint of OT as Figure 3 illustrates, which worsen
the subsequent projections.

Since the barycentric projection relies on the transportation
plan to calculate the weights, any new source sample re-
quires re-computing OT to obtain the transportation plan
for it. This can be computationally prohibitive in large-
scale settings. In the next section, we show that the densities
estimated via InfoOT can be leveraged to compute the condi-
tional expectation, which leads to a new mapping approach
that is both robust and generalizable.

5.1. Conditional Expectation via KDE

When treating the transportation plan as a probability
mass function in the right-hand side of (equation 6), the
barycentric projection resembles the conditional expectation
E[Y |X = x]. Indeed, the classic definition of barycentric
projection (Ambrosio et al., 2005) is defined as the integral
over the conditional distribution. But, this again faces the
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h  0 (Barycentric)→ h = 0.1 h = 0.3 h = 0.5

Figure 3: Projection under imbalanced samples. When the cluster sizes mismatch between source and target, barycentric projection
wrongly projects samples to the incorrect cluster. In contrast, increasing the bandwidth of conditional projection gradually improves the
robustness and yields better projection.

issues discussed in section 4. Instead, equipped with the
densities estimated via KDE and InfoOT, the conditional ex-
pectation can be better estimated with classical Monte-Carlo
importance sampling using samples from the marginal PY :

x 7→ E
PY |X=x

[y] = E
y∼PY

[
fY |X=x(y)

fY (y)
y

]
= E

y∼PY

[
fXY (x, y)

fX(x)fY (y)
y

]
≈ 1

Z

f̂Γ(x, yj)

f̂X(x)f̂Y (yj)
yj (7)

where Z =
∑m

j=1 f̂Γ(x, yj)/(f̂X(x)f̂Y (yj)) is the normal-
izing constant. Compared to the barycentric projection, the
importance weight for each yj is the ratio between the joint
and the marginal densities. To distinguish the KDE condi-
tional expectation with barycentric projection, we will refer
to the proposed mapping as conditional projection.

Robustness against Noisy Data. By definition in equa-
tion 3, the joint density f̂Γ(x, y) measures the similarity of
(x, y) to all other pairs selected by the transportation plan
Γ. Even if x is aligned with outliers or wrong clusters, as
long as the points near x are mostly aligned with the correct
samples, the conditional projection will project x to simi-
lar samples as they are upweighted by the joint density in
(7). This makes the mapping much less sensitive to outliers
and imbalanced datasets. See Figure 1 and Figure 3 for
illustrations.

Out-of-sample Mapping. The conditional projection is
well-defined for any x ∈ X , and naturally generalizes to new
samples without recomputing the OT. Importantly, the im-
portance weight f̂Γ(x, y)/(f̂X(x)f̂Y (y)) can be interpreted
as a similarity score between (x, y), which is useful for
retrieval tasks as section 6.3 shows.

The conditional projection tends to cluster points together
with larger bandwidths that lead to more averaging. We
found that using a smaller bandwidth (e.g., h = 0.1) for the
conditional projection improves the diversity of the projec-
tion when the dataset is less noisy, e.g., the data in Figure 1.
For noisy or imbalanced datasets, the same bandwidth used
for optimizing InfoOT works well. Note that analogous to
Lemma 4.2, when the bandwidth h → 0, the conditional
projection converges to the barycentric projection, making

the barycentric projection a special case of the conditional
projection (Figure 3).

6. Experiments
We now evaluate InfoOT with experiments in point cloud
matching, domain adaptation, cross-domain retrieval, and
single-cell alignment. All the optimal transport approaches
are implemented or adopted from the POT library (Flamary
et al., 2021). Detailed experimental settings and additional
experiments can be found in the appendix.

6.1. Point Cloud Matching
We begin with a 2D toy example, where both source and tar-
get samples are drawn from a Gaussian distribution with 2
modes, but the latter is rotated and has two outliers added to
it, as Figure 1 shows. We compare the behavior of different
variants of OT and mappings on this data. Perhaps not sur-
prisingly, standard OT maps the source points in the same
cluster to two different target clusters, overlooking the in-
trinsic structure of the data. In comparison, the alignment of
InfoOT retains the cluster structure. On the right hand side,
the barycentric projection maps two source points wrongly
to the target outliers, while the conditional projection is
not affected by the outliers. Lastly, we demonstrate an out-
of-sample mapping with the conditional projection, where
newly sampled points are correctly mapped to clusters.

Figure 3 depicts an class-imbalanced setting, where the
corresponding clusters in source and target have different
numbers of samples. Therefore, the barycentric projection
wrongly maps samples from the same source cluster to dif-
ferent target clusters. When increasing the bandwidth in the
conditional projection, the smoothing effect of KDE grad-
ually corrects the mapping and yields more concentrated
projections. In appendix B.1, we further demonstrate that In-
foOT improves the baselines in a color transfer task, where
pixels are treated as points in RGB space.

6.2. Domain Adaptation
Next, we apply the fused version of InfoOT to two do-
main adaptation benchmarks: MNIST-USPS and the Office-
Caltech dataset (Gong et al., 2012). The MNIST (M) and
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A->C

F-InfoOT Barycentric F-InfoOT ConditionalSinkhornRaw Data

Figure 4: tSNE visualization of projections. We show the t-SNE visualization of projectrd source samples (circles) along with the target
samples (triangles) on A→C. Classes are indicated by colors.

OT Sinkhorn GL-OT FGW Linear UOT F-InfoOT F-InfoOT∗

MNIST-USPS

M→U 46.6±1.2 62.7±2.0 63.0±2.0 49.6±7.3 60.8±2.3 65.6±2.3 69.9±3.1 61.1±1.9
U→M 48.1±1.1 58.6±0.9 58.8±1.0 37.8±5.3 59.5±1.0 57.7±1.0 65.1±1.4 57.0±1.7

Office-Caltech

C→D 61.3±10.9 71.9±15.9 76.9±18.6 61.3±10.9 58.1±12.5 81.9±11.9 78.1±13.9 87.5±7.8
C→W 64.0±7.0 66.0±9.3 66.7±9.4 64.0±7.0 62.0±7.4 77.3±6.4 79.7±4.3 81.0±6.7
C→A 78.6±4.7 77.3±4.8 83.3±6.1 79.0±4.5 77.9±6.7 87.8±3.5 87.0±3.7 90.6±2.0
D→W 90.7±3.8 90.7±4.7 93.7±4.3 90.7±3.8 89.0±6.3 93.3±5.7 91.0±4.1 93.3±4.7
D→A 73.8±4.5 73.4±2.9 84.4±2.9 73.8±4.5 72.7±3.9 87.8±3.2 83.6±4.3 89.8±1.8
D→C 67.0±3.0 66.4±3.8 76.5±2.9 67.0±3.0 67.5±4.1 78.8±2.7 70.2±3.7 80.8±1.8
W→D 81.3±7.8 80.6±10.4 85.6±10.6 81.3±7.8 79.4±7.2 98.8±2.6 79.4±8.9 89.4±11.8
W→C 64.8±4.6 65.8±4.1 73.5±5.4 64.8±4.6 65.5±4.5 76.7±4.3 75.8±3.3 74.4±3.7
W→A 67.3±4.9 69.3±5.4 79.6±3.0 67.3±4.9 70.5±4.8 80.1±3.3 85.5±1.9 89.3±2.3
A→D 73.1±10.6 68.8±8.8 76.3±8.2 73.1±10.6 66.9±7.8 76.3±8.2 80.6±7.5 81.3±9.8
A→W 64.7±6.3 70.0±7.5 70.0±7.0 64.7±6.3 69.3±6.6 69.3±8.6 82.0±7.2 87.0±4.6
A→C 65.4±5.3 69.3±6.0 79.8±5.8 65.5±5.7 66.9±4.5 77.4±3.7 74.4±3.4 81.2±3.6
AVG 71.0±2.5 72.4±3.7 78.9±4.5 71.0±2.5 70.5±2.4 82.1±8.3 80.6±3.3 85.6±3.3

Table 1: Optimal Transport for Domain Adaptation. The Fused-InfoOT with conditional projection (F-InfoOT∗) performs significantly
better than the barycentric counterpart (F-InfoOT) and the other baselines when the dataset exhibit class imbalance, e.g., Office-Caltech.

L2-NN Sink+NN FGW+NN F-InfoOT

Office-Caltech

P@1 70.0±13.9 69.0±11.6 69.6±11.7 76.4±9.0
P@5 62.9±14.0 65.1±6.4 65.6±6.6 75.1±9.1
P@15 53.6±12.1 58.0±6.9 58.5±7.0 70.4±10.6

ImageCLEF

P@1 80.4±10.5 81.9±10.2 81.9±10.4 81.2±9.3
P@5 77.6±9.5 81.1±10.6 81.2±10.6 81.9±9.8
P@15 71.7±9.3 79.2±10.4 79.3±10.3 80.0±10.7

Table 2: Optimal Transport for Cross-Domain Retrieval. With
conditional projection, InfoOT is capable to perform alignment for
unseen samples without any modification.

USPS (U) are digit classification datasets, and the Office-
Caltech dataset contains 4 domains: Amazon (A), Dslr (D),
Webcam (W) and Caltech10 (C), with images labeled as one
of 10 classes. For MNIST and USPS, the raw images are di-
rectly used to compute the distances, while we adopt decaf6
features (Donahue et al., 2014) extracted from pretrained
neural networks for Office-Caltech. Following previous
works on OT for domain adaptation (Alvarez-Melis et al.,

2018; Flamary et al., 2016; Perrot et al., 2016), the source
samples are first mapped to the target, and 1-NN classifiers
are then trained on the projected samples with source labels.
We further include the results of of 5-NN, 10-NN, 20-NN,
and Linear SVM classifiers in Appendix B. The barycentric
projection is adopted for all the baselines, while F-InfoOT
is tested with both barycentric and conditional projection.

Following (Flamary et al., 2016), we present the results over
10 independent trials. In each trial of Office-Caltech, the
target data is divided into 90%/10% train-test split, where
OT and 1-NN classifiers are only computed on the train-
ing set. For MNIST-USPS, only 2000 samples from the
source and target training set are used, while the original
test sets are used. The strength of the entropy regularizer ϵ
is set to 1 for every entropic regularized OT, and the λ of F-
InfoOT is set to 100 for all the experiments. The bandwidth
for each benchmark is selected from {0.2, 0.3, ..., 0.8} with
the circular validation procedure (Bruzzone & Marconcini,
2009; Perrot et al., 2016; Zhong et al., 2010) on M→U
and A→D, which is 0.4 and 0.5, respectively. We compare
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scGEM SNAREseq
FOS, Acc, FOS. Acc..

UnionCom 0.210 58.2 0.265 42.3
MMD-MA 0.201 58.8 0.150 94.2
SCOT (GW) 0.190 57.6 0.150 98.2

InfoOT 0.178 68.9 0.156 98.8

Table 3: Single-Cell Alignment Performance. Similar to GW,
InfoOT also performs well in cross-domain alignment.

F-InfoOT with Sinkhorn distance (Cuturi, 2013), group-
lasso regularized OT (Flamary et al., 2016), fused Gromov-
Wasserstein (FGW) (Vayer et al., 2019), linear-mapping OT
(Perrot et al., 2016), and unbalanced OT (UOT) (Chizat
et al., 2018; Frogner et al., 2015). For OTs involving
intra-domain distances such as F-InfoOT and FGW, we
adopt the following class-conditional distance for the source:
∥xi − xj∥+ 5000 · 1f(xi )̸=f(xj), where the second term is
a penalty on class mismatch (Alvarez-Melis & Fusi, 2020;
Yurochkin et al., 2019) and f is the labeling function. As
Table 1 shows, F-InfoOT with barycentric projection out-
performs the baselines in both benchmarks, demonstrating
that mutual information captures the intrinsic structure of
the datasets. In Office-Caltech, many datasets exhibit the
class-imbalance problem, which makes F-InfoOT with con-
ditional projection significantly outperform the barycentric
projection and the other baselines. Figure 4 visualizes the
projected source and target samples with tSNE (Van der
Maaten & Hinton, 2008). The barycentric projection tends
to produce one-to-one alignments, which suffer from class-
imbalanced data. In contrast, conditional projection yields
concentrated projections that preserves the class structure.

Figure 5: scGEM alignment with InfoOT. The cell types are
indicated by colors.

6.3. Cross-domain Retrieval
We now consider unsupervised cross-domain image re-
trieval, where given a source sample, the algorithms have
to determine the top-k similar target samples. Given fixed
source and target samples, this can be formulated as an
optimal transport problem, where the transportation plan
Γij gives the similarity score between the candidate source
sample xi and target samples yj . Nevertheless, this formu-
lation cannot naturally handle new samples without solving
an entire OT problem again from scratch. In contrast, the
importance weight f̂Γ(x, y)/(f̂X(x)f̂Y (y)) defined in con-

ditional projection (7) naturally provides the similarity score
between the candidate x and each target sample y. We test
F-InfoOT on the Office-Caltech (Gong et al., 2012) and
ImageClef datasets (Caputo et al., 2014), where we adopt
the same hyperparameter for Office-Caltech from the pre-
vious section. In the unsupervised setting, the in-domain
transportation cost for the source is the Euclidean distance
instead of the class-conditional distance. To compare with
standard OTs, we adopt a nearest neighbor approach for the
baselines: (1) retrieve the nearest source sample given an
unseen sample, and (2) use the transportation plan of the
nearest source sample to retrieve target samples. Along with
a simple nearest neighbor retrieval baseline (L2-NN), the
average top-k precision over 10 trials is shown in Table 2.
The fuesed InfoOT significantly outperforms the baselines
on Office-Caltech across different choices of k.

6.4. Single Cell Alignment
Finally, we examine InfoOT in unsupervised alignment be-
tween incomparable spaces with the single-cell multi-omics
dataset from (Demetci et al., 2020). Recent techniques allow
to obtain different cellular features at the single-cell resolu-
tion (Buenrostro et al., 2015; Chen et al., 2019; Stoeckius
et al., 2017). Nevertheless, different features are typically
collected from different sets of cells, and aligning them is
crucial for unified data analysis. We examine InfoOT with
the sc-GEM (Cheow et al., 2016) and SNARE-seq (Chen
et al., 2019) dataset provided by (Demetci et al., 2020) and
follow the same data preprocessing steps, distance calcu-
lation, and evaluation setup. Here, two evaluation metrics
are considered: “fraction of samples closer than the true
match” (FOSCTTM) (Liu et al., 2019) and the label trans-
fer accuracy (Cao et al., 2020). We compare InfoOT with
UnionCom (Cao et al., 2020), MMD-MA (Liu et al., 2019),
and SCOT (Demetci et al., 2020), where SCOT is an opti-
mal transport baseline with Gromov-Wasserstein distance.
Similarly, the bandwidth for each dataset is selected from
{0.2, 0.3, ..., 0.8} with the circular validation procedure.
As Table 3 shows, InfoOT significantly improves the base-
lines on the sc-GEM dataset, while being comparable on
the SNARE-seq dataset, demonstrating the applicability of
InfoOT on cross-domain alignment. Figure 5 further visual-
izes the barycentric projection with InfoOT, where we can
see that cells with the same type are well aligned.

7. Conclusion
In this work, we propose InfoOT, an information-theoretic
extension of optimal transport. InfoOT produces smoother,
coherent alignments by maximizing the mutual informa-
tion estimated with KDE. InfoOT leads to a new mapping
method, conditional projection, that is robust to class im-
balance and generalizes to unseen samples. We extensively
demonstrate the applicability of InfoOT across benchmarks.
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A. Proofs
A.1. Proof of Lemma 4.2

Proof. In the limit when h→ 0, the Gaussian kernel converges to

Kh (t) =

{
1/Zh if t = 0

0 otherwise.

Therefore, the kernel Kh(dX (xi, xk)) will only have non-zero value when xi = xk, which implies that the kernelized
mutual information will converge as follows:

lim
h→0

ÎΓ(X,Y ) = lim
h→0

∑
i,j

Γij log
n2 ·

∑
k,l ΓklKh (dX (xi, xk))Kh (dY(yj , yl))∑

k Kh (dX (xi, xk)) ·
∑

l Kh (dY(yj , yl))
.

=
∑
i,j

Γij log
n2 · Γij/Z

2
h

1/Z2
h

=
∑
i,j

Γij log Γij + 2 log(n)

= −H(Γ) + 2 log(n).

A.2. Projected Gradient Descent

The classic mirror descent iteration is written as:

xt+1 ← argmin
x

{τ⟨∇f(xt), x⟩+D(x∥xt)} .

When D(y||x) is the KL divergence: DKL(y||x) =
∑

i yi log
yi

xi
, the update has the following form:

(xt+1)i = elog(xt)i−τ∇f(xt) = (xt)ie
−τ∇f(xt).

In our case, before the projection, the update reads

Γ′
t+1 =

(
Γt ⊙ e−τ(C−λ∇Γt ÎΓt (X,Y )−ϵ∇H(Γt))

)
.

Next, we solve the following projection w.r.t. KL metric:

Γt+1 = argmin
Γ∈Π(p,q)

DKL(Γ∥Γ′
t+1).

As (Benamou et al., 2015) shows, the KL projection is equivalent to solving the entropic regularized optimal transport
problem, which is usually refer to the sinkhorn distance (Cuturi, 2013). Following (Peyré et al., 2016), we set the stepsize
τ = 1/ϵ to simplify the iterations and reach the following update rule:

Γt+1 ← argmin
Γ∈Π(p,q)

〈
Γ, C − λ∇ΓÎΓt(X,Y )

〉
− ϵH(Γ).

B. Additional Experiments
B.1. Color Transfer

Color transfer aims to transfer the colors of the target images into the source image. Optimal transport achieves this by
treating pixels as points in the RGB space, and maps the source pixels to the target ones. Here, 500 pixels are sampled from
each image to compute the OT, then the barycentric projection is applied to map all the source pixels to target. We compare
fused InfoOT with standard OT, Sinkhorn distance (Cuturi, 2013), and linear mapping estimation (Perrot et al., 2016) and
show the results in Figure 6. We can see that InfoOT produces a sharper results than the baselines while decently recovering
the colors in the target image.
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Source Target SinkhornOT F-InfoOTLinear

Figure 6: Color Transfer via Optimal Transport. Fused InfoOT produces sharper results while preserving the target color compared to
the baselines.

EN-ES EN-FR EN-DE EN-IT EN-RU
Supervision → ← → ← → ← → ← → ←

PROCRUSTES 5K Words 81.2 82.3 81.2 82.2 73.6 71.9 76.3 75.5 51.7 63.7
Adv-NN None 81.7 83.3 82.3 82.1 74.0 72.2 77.4 76.1 52.4 61.4
InvOT None 81.3 81.8 82.9 81.6 73.8 71.1 77.7 77.7 41.7 55.4
InfoOT (h=0.55) None 81.6 78.5 82.4 80.5 75.4 74.2 78.6 75.7 48.1 52.9

GW None 84.3 83.2 84.8 83.6 77.4 75.2 82.5 79.8 52.0 61.4

Table 4: Cross-lingual Word Alignment. The InfoOT achieves comparable performance to GW, demonstrating its potential in recovering
cross-lingual correspondence.

B.2. Word Embedding Alignment

Here, we explore the possibility of applying InfoOT for unsupervised word embedding alignment. We follow the setup in
(Alvarez-Melis & Jaakkola, 2018), where the goal is to recover cross-lingual correspondences with word embedding in
different languages. In this case, the pairwise distance between domains might not be meaningful, as the word embedding
models are trained separately. Previous works suggest that cross-lingual word vector spaces are approximately isometric,
which makes Gromov-Wasserstein an ideal choice due to its ability to align isometric spaces. Here, we treat GW as the
oracle, and show that InfoOT can perform comparably to GW (Alvarez-Melis & Jaakkola, 2018) and other baselines such as
InvOT (Alvarez-Melis et al., 2019), Adv-NN (Conneau et al., 2017), and supervised PROCRUSTES. We report the results
on the dataset of Conneau et al. (2017) in Table 4, where both GW and InfoOT are trained with 12000 words and refined
with Cross-Domain Similarity Scaling (CSLS) (Conneau et al., 2017). The entropy regularizer is 0.0001 and 0.02 for GW
and InfoOT, respectively. We can see that InfoOT performs comparably with the baselines and GW, demonstrating its
applicability in recovering cross-lingual correspondence.

B.3. Different Hyperparameter for InfoOT
Here, we report the performance of InfoOT with different weights for entropic regularizer and mutual information on domain
adaptation. As Table 5 shows, Fused-InfoOT performs consistently well across different hyperparameter selections.

B.4. Experiments beyond 1-NN Classifier

We report the performances of InfoOT and baselines with general k-NN classifiers and linear SVM classifiers in Table 6.
We can see that fused-InfoOT consistently outperforms the baselines beyond 1-NN classifiers on Office-Caltech domain
adaptation benchmark. In addition, compared to the baselines, the performance of InfoOT is more robust to the choice of the
number of neighbors k.

B.5. Baselines beyond Optimal Transport

We compare InfoOT with the following non-OT baselines: Geodesic Flow Kernel (GFK) (Gong et al., 2012), CORrelation
Alignment (CORAL) (Sun et al., 2016), Scatter Component Analysis (SCA) (Ghifary et al., 2016), Joint distribution
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(λ, ϵ) (100, 1) (100, 10) (100, 20) (10, 1) (200, 1)

C→D 87.5±7.8 86.3±8.7 85.0±8.9 87.5±7.8 86.9±8.0
C→W 81.0±6.7 86.7±7.7 88.0±5.9 80.0±6.1 81.7±7.2
C→A 90.6±2.0 90.5±2.1 90.7±2.1 89.4±2.4 90.6±2.0
D→W 93.3±4.7 92.7±6.0 91.3±5.3 93.3±5.7 94.0±4.4
D→A 89.8±1.9 89.9±2.1 89.6±1.9 89.6±1.7 89.8±1.5
D→C 80.8±1.8 81.2±1.9 81.5±1.6 80.7±1.8 80.6±1.8
W→D 89.4±11.8 86.9±10.4 83.8±11.5 91.9±12.2 90.0±11.9
W→C 74.4±3.7 74.2±3.7 74.0±3.4 74.2±4.6 74.4±3.8
W→A 89.3±2.3 89.3±2.0 89.3±2.0 86.4±2.8 89.3±2.3
A→D 81.3±9.8 80.6±9.5 82.5±11.7 81.9±10.4 82.5±9.2
A→W 87.0±4.6 83.3±6.3 83.0±6.0 83.8±6.5 87.0±4.6
A→C 81.2±3.6 80.8±4.0 80.2±3.9 81.2±3.3 82.2±2.7

AVG 85.6±5.6 85.2±5.3 84.9±5.1 85.0±5.6 85.7±5.5

Table 5: InfoOT with different hyperparameters. We test the Fused-InfoOT with conditional projection by varying the regularizer
weights (λ, ϵ). Note that Table 1 in the main paper shows the results of (λ = 100, ϵ = 1).

1-NN 5-NN 10-NN 20-NN Linear

OT 71.0±8.8 77.0±6.4 78.3±4.8 77.5±6.8 77.8±8.6
Sinkhorn 72.4±7.3 76.0±5.3 76.3±4.0 75.2±6.3 76.7±9.8
GL-OT 78.9±7.3 80.7±5.3 80.5±4.3 78.2±7.1 78.1±9.7
FGW 71.0±8.8 76.9±6.5 78.3±4.8 77.5±6.8 77.5±7.9
Linear 70.5±8.4 75.9±6.2 77.4±5.4 77.5±7.1 76.7±7.5
F-InfoOT 80.6±5.7 81.4±5.8 79.7±5.0 76.4±7.1 82.9±7.0
F-InfoOT∗ 85.5±5.6 85.4±5.5 85.4±5.5 81.7±7.2 81.4±5.3

Table 6: Results beyond 1-NN. We evaluate the performance with k-NN classifiers and linear classifiers.

GFK CORAL SCA JDA TJM DDC DAN MEDA F-InfoOT∗

C→D 86.6 84.7 87.9 89.8 84.7 88.8 89.3 91.1 87.9
C→W 77.6 80.0 85.4 85.1 81.4 85.4 90.6 95.6 85.8
C→A 88.2 92.0 89.5 89.6 88.8 91.9 92.0 93.4 91.1
D→W 99.3 99.3 98.6 99.7 99.3 98.2 98.5 97.6 97.3
D→A 76.3 85.5 90.0 91.7 90.3 89.5 90.0 93.2 91.3
D→C 71.4 76.8 78.1 85.5 83.8 81.1 80.3 87.5 82.9
W→D 100 100 100 100 100 100 100 99.4 96.2
W→C 69.8 75.5 74.8 84.8 83.0 78.0 81.2 93.2 80.3
W→A 76.8 81.2 86.1 90.3 84.6 84.9 92.1 99.4 90.0
A→D 82.2 84.1 85.4 80.3 76.4 89.0 91.7 88.1 81.5
A→W 70.9 74.6 75.9 78.3 71.9 86.1 91.8 88.1 85.4
A→C 79.2 83.2 78.8 83.6 84.3 85.0 84.1 87.4 82.5

AVG 81.5 84.7 85.9 88.2 86.0 88.2 90.1 92.8 87.7

Table 7: Baselines beyond OT.

alignment (JDA) (Long et al., 2013), Transfer Joint Matching (TJM) (Long et al., 2014a), Deep Domain Confusion (DDC)
(Tzeng et al., 2014), Deep Adaptation Network (DAN) (Long et al., 2014b), and Manifold Embedded Distribution Alignment
(MEDA) (Wang et al., 2018). For fair comparison, we report the performance of Fused-InfoOT calculated with full source
and target dataset instead of the 10-fold setting in the main context. As Table 7 shows, InfoOT performs comparably to
many baselines without training or finetuning neural networks.

C. Limitations
While we have illustrated successful applications of InfoOT, there are limitations. One could expect InfoOT to perform worse
when the geometry of input spaces provides little information. In particular, for raw inputs such as image datasets, InfoOT
would not perform well without pre-extracted features. It is also non-trivial to directly apply InfoOT to very large-scale
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problems with millions of data points. Computational-efficient extensions such as mini-batch optimal transport (Nguyen
et al., 2022) should be considered to apply InfoOT to large-scale datasets.
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