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Outline

• Goal: solve optimization problems over distributions

• Approach: follow gradient flow (GF) of optim. objective

• JKO: minimizing movement scheme, discretizes flow

• Brenier Theorem allows to write JKO as an optimization 

on the space of convex functions

• Our method (JKO-ICNN) implements JKO using Input 

Convex Neural Networks (ICNN)

From Measures to Convex Functions

• Under some assumptions, Brenier theorem yields: 

 


• Therefore, JKO scheme can be written as: 



• Measures implicitly defined via:  
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Background: Gradient Flows

• GF: steepest descent curve  of functional 

• In Euclidean space :  


• In Probability space : 
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Background: JKO Scheme

• A time discretization of gradient flows in prob. space:        

,   


• Jordan-Kinderlehrer-Otto (1998)

• Implementation requires tractable modeling of measures
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From Convex Functions to ICNN

• Parametrize  via input-convex neural nets (Amos et al. ’17)

• Problem becomes: 



• Simple form for potential/interaction functionals: 

 



• Surrogate objectives for certain internal energies
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Setting

• We consider problems of the form

• We focus on 3 functional families:                         

 (potential),  

(interaction),      (internal energy)

• For these functionals, GF converges to unique minimizer

• Algorithm gist: use JKO iteratively to minimize 

𝒱(ρ) = ∫ V(x)dρ 𝒲(ρ) =
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F

Application: Molecule Discovery


• Goal: Transport molecular embeddings to areas with 
desirable properties (convex potential V), while staying 
near original set, as measured by divergence D:


                 
min
ρ∈𝒫(𝒳)

F(ρ) := λ1𝔼ρV(x) + λ2D(ρ, ρ0)

Evolving PDEs with Known Solutions

• Low-dim PDEs w/ analytic (full or asymptotic) solution

• Porous medium equation: 


• Additional results: Fokker-Planck and Aggregation Eqs.

∂tρ = Δρm, m > 1

…and in objective value!JKO-ICNN flow tracks true solution, distributionallly…

Equivalences between PDEs and Functional Gradient Flows

Wasserstein distance

step size
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