Distances between Datasets

- Key in various settings: transfer/meta-learning, etc
- How to deal with datasets with different label sets?
- Ideally: model agnostic, sound theoretical footing

Properties of OTDD

- A true metric in the space of measures over feature-label pairs $\mathcal{P}(\mathcal{X} \times \mathcal{Y})$
- Can be estimated from finite samples
- Efficient computation through a Gaussian approximation + online moment estimation

Application: Predicting Transferability

- *NIST Datasets*
- Text Datasets
- MNIST + Augmentations

The Optimal Transport Dataset Distance

$$d(z, z') = \left(d(x, x')^p + W_p^p(d_y, d_{y'}) \right)^{1/p}$$

Distance between feature/label pairs:

$$d(z, z') = \left(d(x, x')^p + W_p^p(d_y, d_{y'}) \right)^{1/p}$$

Distance between datasets:

$$d_{OT}(D_A, D_B) = \min_{\pi \in \Pi(a, b)} \int_{\mathcal{X} \times \mathcal{Y}} d(z, z') \, d\pi(z, z')$$

Labels represented as distribution over features

$$\nu_y = \mathcal{N}(\mu_y, \Sigma_y)$$

Optimal Transport distance: = min-cost matching

Geometric Dataset Distances via Optimal Transport

- David Alvarez-Melis
- Nicolò Fusi

github.com/microsoft/otdd

dmelis.net/projects/otdd