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Abstract
We provide a new approach to training neural
models to exhibit transparency in a well-defined,
functional manner. Our approach naturally oper-
ates over structured data and tailors the predictor,
functionally, towards a chosen family of (local)
witnesses. The estimation problem is setup as a
co-operative game between an unrestricted predic-
tor such as a neural network, and a set of witnesses
chosen from the desired transparent family. The
goal of the witnesses is to highlight, locally, how
well the predictor conforms to the chosen fam-
ily of functions, while the predictor is trained to
minimize the highlighted discrepancy. We empha-
size that the predictor remains globally powerful
as it is only encouraged to agree locally with lo-
cally adapted witnesses. We analyze the effect
of the proposed approach, provide example for-
mulations in the context of deep graph and se-
quence models, and empirically illustrate the idea
in chemical property prediction, temporal model-
ing, and molecule representation learning.

1. Introduction
Modern machine learning tasks are increasingly complex,
requiring flexible models with large numbers of parame-
ters such as deep networks (Silver et al., 2016; Vaswani
et al., 2017; Huang et al., 2017). Such modeling gains often
come at the cost of transparency or interpretability. This
is particularly problematic when predictions are fed into
decision-critical applications such as medicine where the
ability to verify predictions may be just as important as the
raw predictive power.

It seems plausible to guide a flexible neural network towards
a complex yet well-understood (i.e., transparent) functional
class. For example, in realizing Wasserstein-1 distance (Ar-
jovsky et al., 2017), the discriminator should be limited
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to 1-Lipschitz functions. A strict adherence to a complex,
global functional class is not the only way to achieve trans-
parency. For example, linearity is a desirable characteristic
for transparency but is sensible to enforce only locally. We
offer therefore a new notion of transparency – functional
transparency – where the goal is to guide models to adopt
a desirable local behavior yet allowing them to be more
flexible globally. Note that functional transparency should
be established only approximately in many cases since, e.g.,
strict local linearity implies global linearity.

Previous approaches to interpretability have mainly focused
on models that operate on fixed-size data, such as scalar-
features (Lakkaraju et al., 2016) or images (Selvaraju et al.,
2016; Mahendran & Vedaldi, 2015). The emphasis has been
on feature relevance or selection (Ribeiro et al., 2016). Re-
cent methods do address some of the challenges in sequen-
tial data (Lei et al., 2016; Arras et al., 2017; Alvarez-Melis
& Jaakkola, 2017), primarily in NLP tasks where the input
sequence is discrete. Interpretability for continuous tempo-
ral data (Al-Shedivat et al., 2017; Wu et al., 2018a) or graph
structures remains largely unexplored.

We develop a novel approach to transparency that is natu-
rally suited for structured data. At the core of our approach
is a game-theoretic definition of transparency. This is set
up as a two-player co-operative game between a predictor
and a witness. The predictor remains a complex model
whereas the witness is chosen from a simple transparent
family. Transparency arises from the fact that the predictor
is encouraged to exemplify simple behavior as captured by
the witness in each local region while remaining globally
powerful. The approach differs from global regularization
of models towards interpretability (Wu et al., 2018a), mod-
els that are constructed a priori to be interpretable, either
architecturally or in terms of the function class (Al-Shedivat
et al., 2017; Lei et al., 2016), or from post-hoc explanations
of black-box methods via local perturbations (Ribeiro et al.,
2016; Alvarez-Melis & Jaakkola, 2017). Our models are
guided towards functional transparency during learning.

As an illustration, we contrast our approach with methods
that seek to obtain interpretable explanations after the fact
(e.g., (Ribeiro et al., 2016)). Derived explanation after train-
ing can be misleading in some cases if the explanation does
not match the functional behavior of the model. For exam-
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(b) The explanation from a normally trained model.

Figure 1. During testing, we fit decision trees to our model and an unregularized model on molecule property prediction at the same local
neighborhood such that the functional approximations are comparable in AUC (because the scale is not crucial). The split criterion on
each node is based on the existence of a complete chemical substructure in Morgan fingerprints (Rogers & Hahn, 2010). The color of each
Morgan fingerprint simply reflects the radius of the fingerprint.

ple, Figure 1 shows local decision tree approximations for
two models: our model trained with such local witnesses
(a, left), and an unregularized model (b, right). The trees
are constructed to achieve the same level of approximation.
The tree for the unregularized model only filters one sample
in each split, lacking generality to explain the (local) behav-
ior. This phenomenon is related to unstable explanations
that arise with already trained models (Alvarez-Melis &
Jaakkola, 2018a; Ghorbani et al., 2019).

The game theoretic approach is very flexible in terms of
models and scenarios. We therefore illustrate the approach
across a few novel scenarios: explaining graph convolu-
tional models using decision trees, revealing local func-
tional variation of a deep sequence model, and exemplifying
decision rules for the encoder in unsupervised graph repre-
sentation learning. Our main contributions are:

• A novel game-theoretic approach to transparency, ap-
plicable to a wide range of prediction models, architec-
tures, and local transparency classes, without requiring
differentiability.

• Analysis on the effective size of the local regions and
establishing equilibria pertaining to different game for-
mulations.

• Illustration of deep models across several tasks, from
chemical property prediction, physical component
modeling, to molecule representation learning.

2. Related Work
The role of transparency is to expose the inner-workings
of an algorithm (Citron & Pasquale, 2014; Pasquale, 2015),
such as decision making systems. This is timely for state-
of-the-art machine learning models that are typically over-
parameterized (Silver et al., 2016; He et al., 2016) and there-
fore effectively black-box models. An uncontrolled model

is also liable to various attacks (Goodfellow et al., 2015).

Our goal is to regularize a complex deep model so that it
exhibits a desired local behavior. The approach confers an
approximate operational guarantee rather than directly inter-
pretability. In contrast, examples of archetypal interpretable
models include linear classifiers, decision trees (Quinlan,
2014), and decision sets (Lakkaraju et al., 2016); recent
approaches also guide complex models towards highlight-
ing pieces of input used for prediction (Lei et al., 2016),
learning representations that can be decomposed among
training examples (Yeh et al., 2018), or generalizing linear
models while maintaining interpretability (Alvarez-Melis
& Jaakkola, 2018b). A model conforming to a known func-
tional behavior, at least locally, as in our approach, is not
necessarily itself human-interpretable. The approximate
guarantee we offer is that the complex model indeed follows
such a behavior and we also quantify to what extent this
guarantee is achieved.

Previous work on approximating a functional class via
neural networks can be roughly divided into two types:
parametrization-based and regularization-based methods.
Works in the first category seek self-evident adherence to a
functional class, which include maintaining Lipschitz con-
tinuity via weight clipping (Arjovsky et al., 2017), orthog-
onal transformation via scaled Cayley transform of skew-
symmetric matrices (Helfrich et al., 2018), and “stable” re-
current networks via spectral norm projection on the transi-
tion matrix (Miller & Hardt, 2018).

A softer approach is to introduce a regularization problem
that encourages neural networks to match properties of the
functional class. Such regularization problem might come in
the form of a gradient penalty as used in several variants of
GAN (Gulrajani et al., 2017; Bellemare et al., 2017; Mroueh
et al., 2018) under the framework of integral probability met-
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rics (Müller, 1997), adversarial approaches to learn repre-
sentations for certain independence statements (Ganin et al.,
2016; Zhao et al., 2017), and expanding locally linear re-
gions of piecewise linear networks for stable gradients (Lee
et al., 2019). Typically, a tailored regularization problem is
introduced for each functional class. Our work follows this
general theme in the sense of casting the overall problem
as a regularization problem. However, we focus on trans-
parency and our approach – a general co-operative game
– is quite different. Our methodology is applicable to any
choice of (local) functional class without any architectural
restrictions on the deep model whose behavior is sculpted.
The optimization of functional deviation in the game must
remain tractable, of course.

3. Methodology
In this work, given a dataset D = {(xi, yi)}Ni=1 ⊂ X ×
Y , we learn an (unrestricted) predictive function f ∈ F :
X → Y together with a transparent – and usually simpler
– function g ∈ G : X → Y defined over a functional class
G. We refer to functions f and g as the predictor and the
witness, respectively, throughout the paper. Note that we
need not make any assumptions on the functional class F ,
instead allowing a flexible class of predictors. In contrast,
the family of witnesses G is strictly constrained to be a
transparent functional set, such as the set of linear functions
or decision trees. We assume to have a deviation function
d : Y × Y → R≥0 such that d(y, y′) = 0 ⇐⇒ y = y′,
which measures discrepancy between two elements in Y and
can be used to optimize f and g. To simplify the notation,
we define Dx := {xi : (xi, yi) ∈ D}. We introduce our
game-theoretic framework in §3.1, analyze it in §4, and
instantiate the framework with concrete models in §5.

3.1. Game-Theoretic Transparency
There are many ways to use a witness function g ∈ G to
guide the predictor f by means of discrepancy measures.
However, since the witness functions can be weak such as
linear functions, we cannot expect that a reasonable predic-
tor would agree to it globally. Instead, we make a slight
generalization to enforce this criterion only locally, over
different sets of neighborhoods. To this end, we define local
transparency by measuring how close f is to the family G
over a local neighborhood B(xi) ⊂ X around an observed
point xi. One straightforward instantiation of such a neigh-
borhood Bε(xi) in temporal domain will be simply a local
window of points {xi−ε, . . . , xi+ε}. Our resulting local
discrepancy measure is

min
g∈G

1

|B(xi)|
∑

xj∈B(xi)

d(f(xj), g(xj)). (1)

The summation can be replaced by an integral when a con-
tinuous neighborhood is used. The minimizing witness

function, ĝxi
, is indexed by the point xi around which it

is estimated; depending on the function f , the minimizing
witness can change from one neighborhood to another. If
we view the minimization problem game-theoretically, ĝxi

is the best response strategy of the local witness around xi.

The local discrepancy measure can be incorporated into an
overall estimation criterion in many ways so as to guide the
predictor towards the desired functional form. This guidance
can be offered as a uniform constraint with a permissible
δ-margin, as an additive symmetric penalty, or defined asym-
metrically as a game theoretic penalty where the information
sets for the predictor and the witness are no longer identical.
We consider each of these in turn.

Uniform criterion. A straightforward formulation is to
confine f to remain within a margin δ of the best fitting
witness for every local neighborhood. Assume that a primal
lossL(·, ·) is given for a learning task. The criterion imposes
the δ-margin constraint uniformly as∑
(xi,yi)∈D

L(f(xi), yi) (2)

s.t.min
g∈G

1

|B(xi)|
∑

xj∈B(xi)

d(f(xj), g(xj)) ≤ δ, ∀xi ∈ Dx.

We assume that the optimal g with respect to each constraint
may be efficiently found due to the simplicity of G and
the regularity of d(·, ·). We also assume that the partial
derivatives with respect to f , for fixed witnesses, can be
computed straightforwardly under sufficiently regular L(·, ·)
in a Lagrangian form. In this case, we can solve for f , local
witnesses, and the Lagrange multipliers using the mirror-
prox algorithm (Nemirovski, 2004).

The hard constraints in the uniform criterion will lead to
strict transparency guarantees. However, the effect may be
undesirable in some cases where the observed data (hence
the predictor) do not agree with the witness in all places.
The resulting loss of performance may be too severe. As
an alternative, we can enforce the agreement with local
witnesses to be small in aggregate across neighborhoods.

Symmetric game. We define an additive, unconstrained,
symmetric criterion to smoothly trade off between perfor-
mance and transparency. The resulting objective is∑

(xi,yi)∈D

[
L(f(xi), yi) +

min
g∈G

λ

|B(xi)|
∑

xj∈B(xi)

d(f(xj), g(xj))

]
(3)

To illustrate the above idea, we generate a synthetic dataset
to show a neighborhood in Figure 2a with an unconstrained
piecewise linear predictor f ∈ Fpiecewise linear in Figure 2b.
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(a) Neighborhood B(x20) (b) f ∈ Fpiecewise linear

(c) gxi=1 ∈ Glinear (d) gxi=1 ∈ Gdecision stump

Figure 2. Examples of fitting a neighborhood B(x20) (2a) with a
piecewise linear predictor (2b). Using different witness families
(Figs. 2c&2d, dashed lines) leads to predictors (solid green) with
different behaviors, despite yielding the same error (MSE=1.026).

Clearly, f does not agree with a linear witness within this
neighborhood. However, when we solve for f together with
a linear witness gxi ∈ Glinear as in Figure 2c, the resulting
function has a small residual deviation from Glinear, more
strongly adhering to the linear functional class while still
closely tracking the observed data. Figure 2d shows the flex-
ibility of our framework where a very different functional
behavior can be induced by changing the functional class
for the witness.

Asymmetric game. Solving the symmetric criterion can be
computationally inefficient since the predictor is guided by
its deviation from each of the local witness on all points
within each of the local neighborhoods. Moreover, the pre-
dictor value at any point xi is subject to potentially conflict-
ing regularization terms across the neighborhoods, which
is undesirable. The inner summation in Eq. (3) may in-
volve different sizes of neighborhoods B(xi) (e.g., end-
point boundary cases) and this makes it more challenging to
parallelize the computation.

We would like to impose even functional regularization at
every f(xi) based on how much the value deviates from
the witness associated with the local region B(xi). This
approach leads to an asymmetric co-operative formulation,
where the information sets for the predictor f and local
witnesses gxi differ. Specifically, the local best-response
witness ĝxi is chosen to minimize the local discrepancy as
in Eq. (1), and thus depends on f values within the whole
region; in contrast, the predictor f only receives feedback
in terms of the resulting deviation at xi, only seeing ĝxi

(xi).
From the point of view of the predictor f , the best response
strategy is obtained by minimizing∑

(xi,yi)∈D

[
L(f(xi), yi) + λ d(f(xi), ĝxi(xi))

]
(4)

To train the proposed method, we perform alternating up-
dates for f(·) and ĝxi

(·) on their respective criteria. Note
that in this case the objective cannot be written as a sin-
gle minimization problem (different information sets) but

can be still interpreted as a game. The deviation between
the predictor and the witness, d(·, ·), can also be defined
asymmetrically as we do in §5.3.

4. Analysis
We consider here the effectiveness of regularization in re-
lation to the neighborhood size and establish fixed point
equations for the predictor under the three estimation crite-
ria. For simplicity, we assume X = RD and Y = R, but
the results are generalizable to our examples in §5. All the
proofs are in Appendix A.

Neighborhood size. The formulation involves a key trade-
off between the size of the region where the function should
be simple and the overall accuracy achieved by the predictor.
When the neighborhood is too small, local witnesses become
perfect, inducing no regularization on f . Thus the size of the
region is a key parameter. A neighborhood size is sufficient
if the witness class G cannot readily overfit f values within
the neighborhood. Formally,

Definition 1. We say that a neighborhood sizem is effective
for G if for any f 6∈ G we can find B ⊂ X : |B| = m s.t.

min
g∈G

1

m

∑
x∈B

d(f(x), g(x)) > 0. (5)

A trivial example is when G is the constant class, a neighbor-
hood size m is effective if m > 1. Note that the neighbor-
hood B in the above definition can be any finite collection
of points B(·). For example, the points in the neighborhood
induced by a temporal window {xi−ε, . . . , xi+ε} need not
remain in a small `p-norm ball.

For linear models and decision trees, we have
• D+ 1 is the tight lower bound on the effective neighbor-

hood size for the linear class.
• 2k + 1 is the tight lower bound on the effective neigh-

borhood size for decision trees with depth bounded by k.

When the sample sizes within a neighborhoods fall below
the bounds, regularization can still be useful if the witness
class is not uniformly flexible or if the algorithm for finding
the witness is limited (e.g., greedy algorithm for decision
trees).

Equilibrium solutions. The symmetric game constitutes a
standard minimization problem, but the existence or unique-
ness of equilibria under the asymmetric game are not ob-
vious. Our main results in this section make the following
assumptions.

(A1) the predictor f is unconstrained.
(A2) both the loss and deviation are squared errors.
(A3) |B(xi)| = m,∀xi ∈ Dx.
(A4) xj ∈ B(xi) =⇒ xi ∈ B(xj),∀xi, xj ∈ Dx.
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(A5) ∪xi∈Dx
B(xi) = Dx.

We note that (A3) and (A4) are not technically necessary
but simplify the presentation. We denote the predictor in the
uniform criterion (Eq. (2)), the symmetric game (Eq. (3)),
and the asymmetric game (Eq. (4)) as fU , fS , and fA, re-
spectively. We use Xi ∈ Rm×D to denote the neighbor-
hood B(xi) = {x′1, . . . , x′m} (Xi = [x′1, . . . , x

′
m]>), and

f(Xi) ∈ Rm to denote the vector [f(x′1), . . . , f(x′m)]>.
X†j denotes the pseudo-inverse of Xj . Then we have
Theorem 2. If (A1-5) hold and the witness is in the linear
family, the optimal fS satisfies

f∗S(xi) =
1

1 + λ

[
yi +

λ

m

( ∑
xj∈B(xi)

X†j f
∗
S(Xj)

)>
xi

]
,

and the optimal fA, at every equilibrium, is the fixed point

f∗A(xi) =
1

1 + λ

[
yi + λ(X†i f

∗
A(Xi))

>xi

]
,∀xi ∈ Dx.

The equilibrium in the linear class is not unique when the
witness is not fully determined in a neighborhood due to de-
generacy. To avoid these cases, we can use Ridge regression
to obtain a stable equilibrium (proved also in Appendix).

A special case of Theorem 2 is when xi = [1],∀xi ∈
Dx, which effectively yields the equilibrium result for the
constant class; we found it particularly useful to under-
stand the similarity between the two games in this sce-
nario. Concretely, each X†j f(Xj)xi becomes equivalent
to 1

m

∑
xk∈B(xj)

f(xk). As a result, the solution for both
the symmetric and asymmetric game induce the optimal
predictors as recursive convolutional averaging of neighbor-
ing points with the same decay rate λ/(1 + λ), while the
convolutional kernel evolves twice as fast in the symmetric
game than in the asymmetric game.

Next, we show that the hard uniform constraint criterion
yields a very different equilibrium.
Theorem 3. If (A1-5) hold and the witness is in the linear
family, the optimal fU satisfies

f∗U (xi) =


α(xi, f

∗
U ), if α(xi, f

∗
U ) > yi,

β(xi, f
∗
U ), if β(xi, f

∗
U ) < yi,

yi, otherwise,

for xi ∈ Dx, where

α(xi, f
∗
U ) = max

xj∈B(xi)

[
(X†j f

∗
U (Xj))

>xi

−
√
δm−

∑
xk∈B(xj)\{xi}

(f∗U (xk)− (X†j f
∗
U (Xj))>xk)2

]
;

β(xi, f
∗
U ) = min

xj∈B(xi)

[
(X†j f

∗
U (Xj))

>xi

+

√
δm−

∑
xk∈B(xj)\{xi}

(f∗U (xk)− (X†j f
∗
U (Xj))>xk)2

]
.

A noticeable difference from the games is that, under uni-
form criterion, the optimal predictor f∗U (xi) may faithfully
output the actual label yi if the functional constraint is sat-
isfied, while the functional constraints are translated into a
“convolutional” operator in the games.

Efficient computation. We also analyze ways of acceler-
ating the computation required for solving the symmetric
game. An equivalent criterion is given by

Lemma 4. If d(·, ·) is squared error, L(·, ·) is differentiable,
f is sub-differentiable, and A(4-5) hold, then∑
(xi,yi)∈D

L(f(xi), yi) +
λ

N̄i

[
N̄if(xi)−

∑
xt∈B(xi)

ĝxt
(xi)

|B(xt)|

]2
,

where N̄i :=
∑
xt∈B(xi)

1
|B(xt)| , induces the same equilib-

rium as the symmetric game.

The result is useful when training f on GPU and ĝxi
is

solved analytically on CPU. Compared to a for-loop to han-
dle different neighborhood sizes for Eq. (3) on the GPU,
computing a summarized feedback as in Lemma 4 on CPU
is more efficient (and easier to implement).

Discussion We investigated here discrete neighborhoods
and they are suitable also for structured data as in the exper-
iments. The method itself can be generalized to continuous
neighborhoods with an additional difficulty: the exact com-
putation and minimization of functional deviation between
the predictor and the witness in such neighborhood is in
general intractable. We may apply results from learning
theory (e.g., (Shamir, 2015)) to bound the (generalization)
gap between the deviation computed by finite samples from
the continuous neighborhood and the actual deviation under
a uniform probability measure.

5. Examples
5.1. Conditional Sequence Generation

The basic idea of co-operative modeling extends naturally
to conditional sequence generation over longer periods.
Broadly, the mechanism allows us to inspect the temporal
progression of sequences on a longer term basis.

Given an observation sequence x1, . . . , xt ∈ Rc, the goal
is to estimate probability p(xt+1:T |x1:t) over future events
xt+1, . . . , xT ∈ Rc, typically done via maximum likelihood.
For brevity, we use x1:i to denote x1, . . . , xi. We model the
conditional distribution of xi+1 given x1:i as a multivariate
Gaussian distribution with mean µ(x1:i) and covariance
Σ(x1:i), both parametrized as recurrent neural networks.
Each local witness model gx1:i

(·) is estimated based on the
neighborhood B(x1:i) := {x1:i−ε, . . . , x1:i+ε} with respect
to the mean function µ(·). A natural choice would be a
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K-order Markov autoregressive (AR) model with an `2
deviation loss as:

min
θ

∑
x1:t∈B(x1:i)

‖
K−1∑
k=0

θk+1 · xt−k + θ0 − µ(x1:t)‖22,

where θk ∈ Rc×c,∀k > 0 and θ0 ∈ Rc. The AR model
admits an analytical solution similar to linear regression.

5.2. Chemical Property Prediction

The models discussed in §3 can be instantiated on highly-
structured data, such as molecules, too. These can be rep-
resented as a graphM = (V, E) whose nodes encode the
atom types and edges encode the chemical bonds. Such
representation enables the usage of recent graph convolu-
tional networks (GCNs) (Dai et al., 2016; Lei et al., 2017)
as the predictor f . As it is hard to realize a simple ex-
planation on the raw graph representation, we exploit an
alternative data representation for the witness model; we
leverage depth-bounded decision trees that take as input
Morgan fingerprints (Rogers & Hahn, 2010) x(M), which
are binary vector features indicating the presence of various
chemical substructures (e.g., the nodes in Fig. 1).

The neighborhood B(M) includes molecules {M′} with
Tanimoto similarity greater than 0.6, automatically con-
structed through matching molecular pair analysis (Griffen
et al., 2011). Here we use a multi-label binary classification
task as an example, and adopt a cross-entropy loss for each
label axis for simplicity. At each neighborhood B(M), we
construct a witness decision tree g that minimizes the total
variation (TV) from the predictor as

min
g∈Gtree

1

|B(M)|
∑

M′∈B(M)

dim(Y)∑
i=1

|f(M′)i − g(x(M′))i|. (6)

Note that Eq. (6) is an upper bound and efficient alternative
to fitting a tree for each label axis independently.

5.3. Molecule Representation Learning

Our approach can be further applied to learn transparent
latent graph representations by variational autoencoders
(VAEs) (Kingma & Welling, 2014; Jin et al., 2018). Con-
cretely, given a molecular graph M = (V, E), the VAE
encoder q outputs the approximated posterior zM ∼
N (µM,ΣM) over the latent space, where zM is the con-
tinuous representation of moleculeM. Following common
practice, ΣM is restricted to be diagonal. The VAE decoder
then reconstructs the moleculeM from its probabilistic en-
coding zM. Our goal here is to guide the behavior of the
neural encoder q such that the derivation of (probabilistic)
zM can be locally explained by a decision tree.

We adopt the same setting for the witness function and
neighborhoods as in §5.2, except that the local decision

Table 1. Performance on the Tox-21 dataset. AUCD(ĝM, f) and
AUCB(ĝM, f) generalize the AUC score to use f values as labels,
computed on the testing data and their neighborhoods, respectively.

Aspect Measure GAMEunif GAMEsym DEEP

Performance AUC(f, y) 0.744 0.826 0.815
(the higher the better) AUC(ĝM, y) 0.742 0.824 0.818

Transparency AUCB(ĝM, f) 0.764 0.759 0.735
(the higher the better) AUCD(ĝM, f) 0.959 0.967 0.922

tree g now outputs a joint normal distribution with pa-
rameters [µ̂M, Σ̂M]. To train the encoder, we extend the
original VAE objective LVAE with a local deviation loss
LGtree defined on the KL divergence between the VAE
posterior q(M) = N (µM,ΣM) and witness posterior
g(x(M)) = N (µ̂M, Σ̂M) at each neighborhood as

LGtree :=
1

|D|
∑
M∈D

min
g∈Gtree

∑
M′∈B(M)

KL(g(x(M′))||q(M′))
|B(M)|

The VAE is trained to maximizeLVAE+λ·LGtree . For ease of
optimization, we asymmetrically estimate each decision tree
g with mean squared error between the vectors [µM,ΣM]

and [µ̂M, Σ̂M].

6. Experiments
We conduct experiments on chemical and time-series
datasets. Due to the lack of existing works for explain-
ing structured data, we adopt an ablation setting – compar-
ing our approach (GAME) versus an unregularized model
(DEEP) – and focus on measuring the transparency. We use
subscripts to denote specific versions of the GAME models.
Note that we only fit the local witnesses to the DEEP model
during testing for evaluation. Unless otherwise noted, the
reported results are based on the testing set.

6.1. Molecule Property Prediction
We conduct experiments on molecular toxicity prediction
on the Tox21 dataset from MoleculeNet benchmark (Wu
et al., 2018b), which contains 12 binary labels and 7, 831
molecules. The labels are very unbalanced; the fraction of
the positive label is between 16.15% and 3.51% among the
12 labels. We use GCN as the predictor and decision trees
as the witnesses as in §5.2. The neighborhood sizes m of
about 60% of the molecules are larger than 2, whose median
and maximum are 59 and 300, respectively. Since each
neighborhood has a different size m, we set the maximum
tree depth as max{dlog2(m)e−1, 1} for each neighborhood,
which ensures that the corresponding size m is effective for
m > 2 (see Definition 1). More details are in Appendix B.

Evaluation Measures: A more detailed discussion of how
these measures are computed can be found in Appendix B.

(1) Performance: For the predictor, we compare its pre-
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dictions with respect to the labels in AUC, denoted as
AUC(f, y). As each local witness ĝM(x(M)) also real-
izes a function ofM, it is also evaluated against the labels
in AUC, denoted as AUC(ĝM, y).

(2) Transparency: As labels are unavailable for testing data
in practice, it is more realistic to measure the similarity
between the predictor and the local witnesses to understand
the validity of the explanations derived from the decision
trees G. To this end1, we generalize the AUC criterion for
continuous labels for N references y and predictions y′ as

N∑
i=1

N∑
j=1

I(yi > yj)I(y′i > y′j)/

N∑
i=1

N∑
j=1

I(yi > yj).

The proposed score has the same pairwise interpretation as
AUC, recovers AUC when y is binary, and is normalized
to [0, 1]. Locally, we measure the criterion for the local
witnesses with respect to the predictor in each testing neigh-
borhood as the local deviation, where the average result is
denoted as AUCB(ĝM, f). Globally, the criterion is also
validated among the testing data, denoted as AUCD(ĝM, f).

The results with the uniform and symmetric criteria are
shown in Table 1. A baseline vanilla decision tree, with
depth tuned between 2 and 30, yields 0.617 in AUC(f, y).
Compared to GAMEsym, the local deviation in GAMEunif is
marginally improved due to the strict constraint at the cost
of severe performance loss. We investigate the behaviors
in training neighborhoods and find that GAMEsym exhibits a
tiny fraction of high deviation losses, allowing the model to
behave more flexibly than the strictly constrained GAMEunif
(see Figure 5 in Appendix B). In terms of performance, our
GAMEsym model is superior to the DEEP model in both the
predictor and local witnesses. When comparing the wit-
nesses to the predictor, locally and globally, the GAME mod-
els significantly improve the transparency from the DEEP
model. The local deviation should be interpreted relatively
since the tree depth inherently prevents local overfitting.

We visualize the resulting witness trees in Figure 1 under
the same transparency constraint: for a local neighborhood,
we grow the witness tree for the DEEP model until the
local transparency in AUCB is comparable to the GAMEsym
model. For explaining the same molecule, the tree for the
DEEP model is deeper and extremely unbalanced. Since a
Morgan fingerprint encodes the existence of a substructure
of molecule graphs, an unbalanced tree focusing on the left
branch (non-existence of a substructure) does not capture
much generality. Hence, the explanation of the DEEP model
does not provide as much insight as our GAMEsym model.

Here we do an analysis on the tree depth constraint for
the witness model, as a shallower tree is easier to interpret,

1Since the predictor probability can be scaled arbitrarily to min-
imize the TV from decision trees without affecting performance,
using TV to measure transparency as used in training is not ideal.

Table 2. AUCD(ĝM, f) score on different ∆ in the Tox-21 dataset
(lower ∆ implies shallower trees).

Model ∆ = 0 ∆ = −1 ∆ = −2 ∆ = −3

GAME 0.967 0.967 0.964 0.958
DEEP 0.922 0.916 0.915 0.914

Table 3. Performance of the symmetric and asymmetric setting of
the GAME model with ε = 9.

(×10−2) λ 0 0.1 1 10 100 AR

GAMEasym
Error 8.136 8.057 8.309 9.284 9.794 9.832
Dev. 4.197 4.178 3.431 1.127 0.186 0.000
TV 7.341 7.197 5.706 1.177 0.144 0.000

GAMEsym
Error 8.136 8.089 8.315 9.314 9.807 9.832
Dev. 4.197 4.169 3.426 1.116 0.182 0.000
TV 7.341 7.292 5.621 1.068 0.132 0.000

but more challenging to establish transparency due to the
restricted complexity. To this end, we revise the depth con-
straint to max{dlog2(m)e − 1 + ∆, 1} during training and
testing, and vary ∆ ∈ {−3, . . . , 0}. All the resulting GAME
models outperform the DEEP models in AUC(f, y), and
we report the transparency score in terms of AUCD(ĝM, f)
in Table 2. Even when ∆ = −3, the witness trees in our
GAME model still represent the predictor more faithfully
than those in the DEEP model with ∆ = 0.

6.2. Physical Component Modeling

We next validate our approach on a physical component
modeling task with the bearing dataset from NASA (Lee
et al., 2016), which records 4-channel acceleration data on
4 co-located bearings. We divide the sequence into disjoint
subsequences, resulting in 200, 736 subsequences. Since
the dataset exhibits high frequency periods of 5 points and
low frequency periods of 20 points, we use the first 80 points
in an sequence to forecast the next 20. We parametrize µ(·)
and Λ(·) jointly by stacking 1 layer of CNN, LSTM, and 2
fully connected layers. We set the neighborhood radius ε to
9 such that the witnesses are fit with completely different
data for the beginning and the end of the sequence. The
Markov order K is set to 2 to ensure the effectiveness of the
neighborhood sizes. More details are in Appendix C.

Evaluation involves three different types of errors: 1) ‘error’
is the root mean squared error (RMSE) between greedy au-
toregressive generation and the ground truth, 2) ‘deviation’
is RMSE between the predictor µ(x1:i) and the witness
ĝx1:i

(x1:i), and 3) ‘TV’ is the average total variation of wit-
ness ĝx1:i

parameters [θ, θ0] between every two consecutive
time points. Since the deviation and error are both computed
on the same space in RMSE, the two measures are readily
comparable. For testing, the witnesses are estimated based
on the autoregressive generative trajectories.
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Figure 3. Visualizing the linear witnesses (middle and right plots) on the first channel (left plot) along the autoregressive generative
trajectory (x-axis) on the bearing dataset. The y-axis of the parameters from 0 to 8 denotes the bias (θ0)1 and weights (θ1)1,1:4, (θ2)1,1:4.

We present the results in Table 3 to study the impact of the
game coefficient λ and the symmetry of the games. The
trends in the measures are quite monotonic on λ: with an
increasing λ, the model gradually operates toward the AR
family with lower deviation and TV but higher error. When
λ = 0.1, the GAME models are more accurate than the
DEEP model (λ = 0) due to the regularization effect. Given
the same hyper-parameters, marginally lower deviation in
the symmetric game than in the asymmetric game confirms
our analysis about the similarity between the two. In prac-
tice, the asymmetric game is more efficient and substantially
easier to implement than the symmetric game. Indeed, the
training time is 20.6 sequences/second for the asymmetric
game, and 14.6 sequences/second for the symmetric game.
If we use the formula in Lemma 4, the symmetric game can
be accelerated to 20.4 sequences/second, but the formula
does not generalize to other deviation losses.

We visualize the witnesses with their parameters [θ0, θ]
along the autoregressive generative trajectories in Figure 3.
The stable functional patterns of the GAME model as re-
flected by θ, before and after the 9th point, highlight not
only close local alignments of the predictor and the AR fam-
ily (being constant vectors across columns) but also flexible
variation of functional properties on the predictor across
regions. In contrast, the DEEP model yields unstable lin-
ear coefficients, and relies more on offsets/biases θ0 than
the GAME model, while the linear weights are more useful
for grounding the coordinate relevance for interpretability.
Finally, we remark that despite the uninterpretable nature
of temporal signals, the functional pattern reflected by the
linear weights as shown here yields a simple medium to un-
derstand its behavior. Due to space limitation, the additional
analysis and visualization are included in Appendix C.

6.3. Molecule Representation Learning
Finally, we validate our approach on learning representa-
tions for molecules with VAEs, where we use the junction
tree VAE (Jin et al., 2018) as an example. Here the encoders
of VAEs, with and without the guidance of local decision
trees as in §5.3, are denoted as DEEP and GAME, respec-
tively. The models are trained on the ZINC dataset (Sterling
& Irwin, 2015) containing 1.5M molecules, and evaluated
on a test set with 20K molecules. We measure the perfor-
mance in terms of the evidence lower bound (ELBO) over

Figure 4. The local decision tree explains the latent representation
for a molecule (upper left) by identifying locally discriminative
chemical substructures. The leaf nodes are annotated with their
sizes (number of molecules belonging to that cluster).

Table 4. The performance in ELBO for the raw neural encoders
and locally adapted decision trees. The deviation is defined in §5.3.

Model ELBOneural encoder ELBOdecision tree deviation (LGtree )

DEEP -21.6 -25.4 4.64
GAME -21.5 -25.1 3.98

the test set. Here we consider two scenarios: the ELBO
using the raw latent representations from the original neural
encoder, and using the interpreted latent representations gen-
erated by locally fitted decision trees. The average deviation
loss in KL divergence LGtree , defined in §5.3, over the testing
neighborhoods is also evaluated.

The results are shown in Table 4. Our GAME model per-
forms consistently better under all the metrics. Figure 4
shows an example of how our decision tree explains the
local neighborhood of a molecule. We found most of the
substructures selected by the decision tree occur in the side
chains outside of Bemis-Murcko scaffold (Bemis & Murcko,
1996). This shows the variation in the latent representation
mostly reflects the local changes in the molecules, which
is expected since changes in the scaffold typically lead to
global changes such as chemical property changes.

7. Conclusion
We propose a novel game-theoretic approach to learning
transparent models on structured data. The game articulates
how the predictor model’s fitting can be traded off against
agreeing locally with a transparent witness. This work opens
up many avenues for future work, from theoretical analysis
of the games to a multi-player setting.
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