

TOWARDS ROBUST INTERPRETABILITY WITH SELF-EXPLAINING NEURAL NETWORKS

David Alvarez-Melis & Tommi S. Jaakkola | MIT CSAIL

Summary

- What makes linear models "interpretable"? Can we preserve it while increasing the complexity of the models?
- We identify basic desiderata for interpretability —explicitness, faithfulness and stability—and enforce them during training
- Leads to a class of rich complex models that produce robust **explanations** as intrinsic part of their operation

Motivation

- High modeling capacity often necessary for performance
- Recent work focused on producing a-posteriori explanations
- Explains locally w/ limited access to inner model workings:
- gradients/reverse-propagation
- black-box queries
- Challenges:
- definition of locality
- computational cost
- explanations aren't robust (small Δ in input \Rightarrow large Δ in expl)
- A-posteriori explanations are sometimes the only option (e.g. for already-trained models)
- Otherwise, can we make our models explain their predictions as **intrinsic** part of their operation?

Self-Explaining Neural Network

DEF. $f(x) = g(\theta_1(x)h_1(x), ..., \theta_k(x)h_k(x))$ is a **self-explaining** model if:

- **1.** g is monotone and completely additive
- **2.** g is increasing on each $z_i := \theta_i(x)h_i(x)$ **3.** $\{h_i(x)\}_{i=1}^k$ is an interpretable representation of x

concept encoder $h(\cdot; w_h)$

relevance parametrizer $\theta(\,\cdot\,;w_{ heta})$

4. k is 'small'

in the second

interpretable basis features

5. θ Is locally-Lipschitz with respect to h

Concept encoder: transforms input into

e.g. sum, affine functions with positive coefficients application-dependent

view f as function of $\xi := h(x)$. Want $\theta_i(x)$ to behave as (constant) coeffs of f w.r.t ξ , i.e. $\theta(x) \approx \nabla_{\xi} f$ use $\nabla_{x} f = \nabla_{\xi} f \cdot J_{x}^{h}$ to impose proxy condition:

$$\mathcal{L}_{\theta}(f(x)) := \|\nabla_x f(x) - \theta(x)^{\top} J_x^h(x)\| \approx 0$$

ensures f not only **looks** like a linear model but actually (locally) behaves like one!!!

Training Loss: $\mathcal{L}_y(f(x), y) + \lambda \mathcal{L}_{\theta}(f) + \xi \mathcal{L}_h(x, \hat{x})$

reconstruction

Aggregator:

combines relevance scores and concepts to produce prediction

 $\{(h(x)_i, \theta(x)_i)\}_{i=1}^k$ Parametrizer: generates concept relevance scores

Learning Interpretable Basis Concepts

- Explanation based on raw inputs suitable in low-dimension
- For high-dim inputs, raw features are not ideal for explanation
 - often lead to noisy explanations, sensitive to artifacts
 - hard to analyze coherently
 - lack of robustness is amplified
- Instead, operate on higher level features ("concepts"):
 - e.g. textures and shapes instead of raw pixels
- Ideally, concepts informed by in-domain expert knowledge
- If not available, concepts can be learnt with rest of the model
- Desiderata for concepts h(x):
- **Proposed Approach**
- 1. Fidelity: preserve relevant info
- autoencoder loss
- 2. Diversity: few non-overlapping concepts -
- enforce sparsity
- 3. Grounding: be human-understandable show prototypes

Interpretability Desiderata

- (i) Explicitness/Intelligibility: Are the explanations immediate and understandable?
- (ii) Faithfulness: Are relevance scores indicative of "true" relevance?
- (iii) Stability: How consistent are the explanations for similar/ neighboring inputs?

From Interpretable to Complex

Starting point: linear model

$$f(x) = \theta^{\mathsf{T}} x = \sum_{i=1}^{n} \theta_i x_i + \theta_0$$

- Interpretable because:
- 1. inputs x_i grounded on meaningful observations
- 2. θ_i have clear interpretation: \pm contribution of x_i to f(x)
- 3. additive aggregation of $\theta_i x_i$ does't conflate feature-wise interpretation of impact

Step 1: Generalized coefficients.

Let coefficients depend on the input:

$$f(x) = \theta(x)^{\mathsf{T}} x$$

- Choose $\theta(\cdot)$ from a complex class (e.g. neural net)

Step 2: Beyond raw features.

$$f(x) = \theta(x)^{\mathsf{T}} h(x)$$

- linear model explanation is only in terms of raw inputs
- allow more general features interpretable basis concepts

Step 3: Further generalization. $f(x) = g(\theta(x)_1 h(x)_1, ..., \theta(x)_n h(x)_n)$

Aggregation function more general than sum

Model is now nearly as powerful as any neural network but not really more interpretable (so far).

Need to **regularize** model to preserve the interpretability properties of the original linear model!!

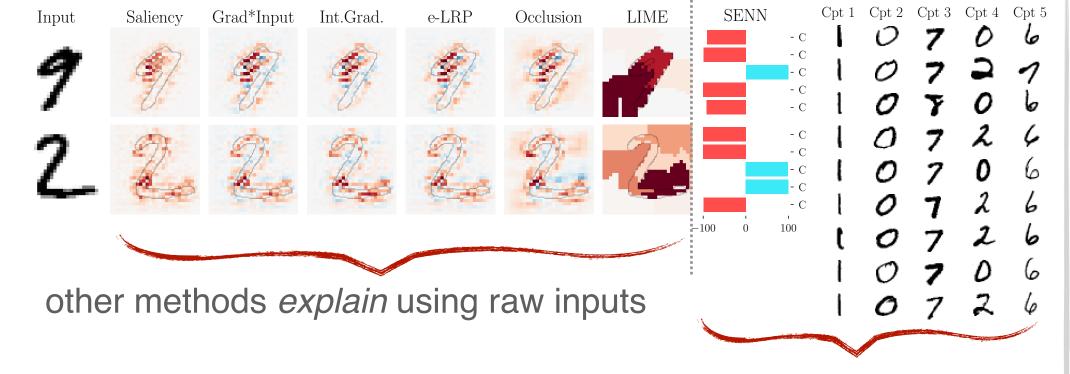
Experiments

classification

aggregator $g(\cdot; w_g)$

class label

Explicitness/Intelligibility



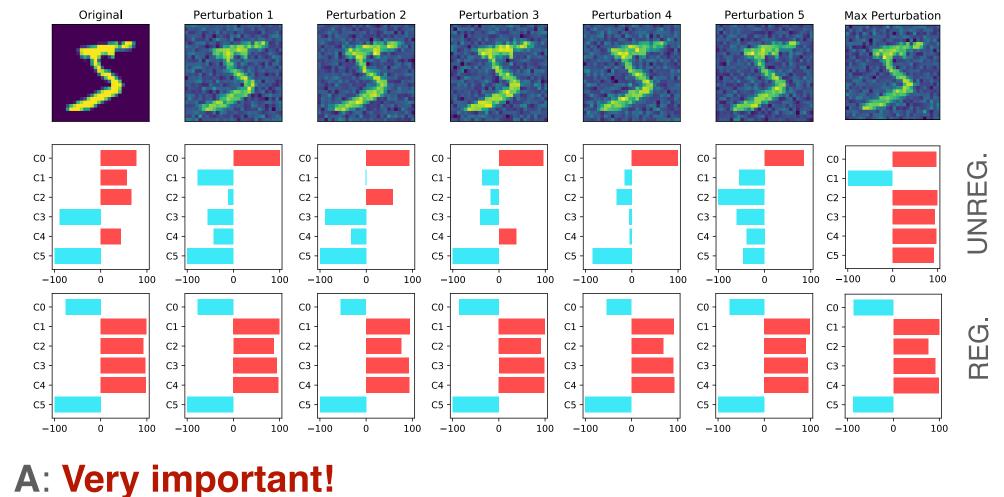
SENN *explains* using concepts

robustness

loss \mathcal{L}_{θ}

Ablation Results

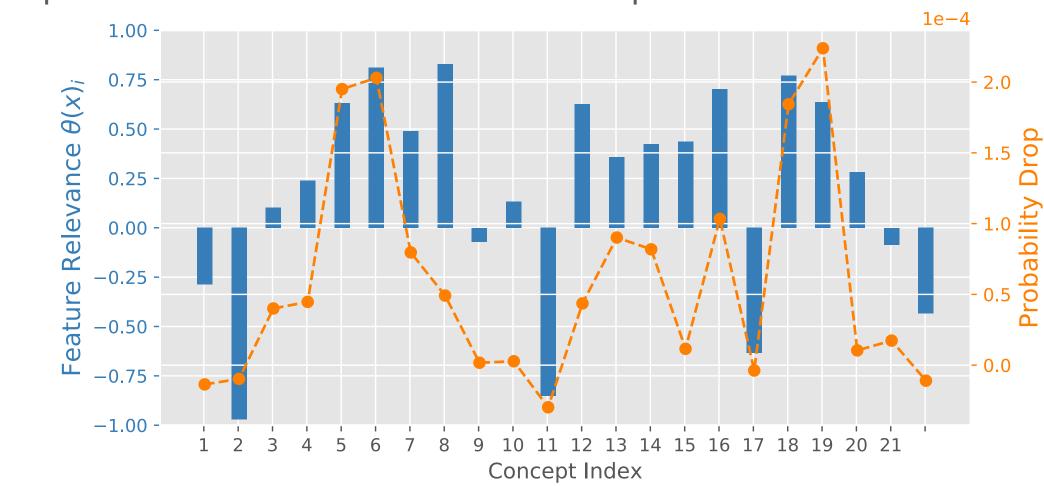
Q: How important is it to regularize the coefficients?

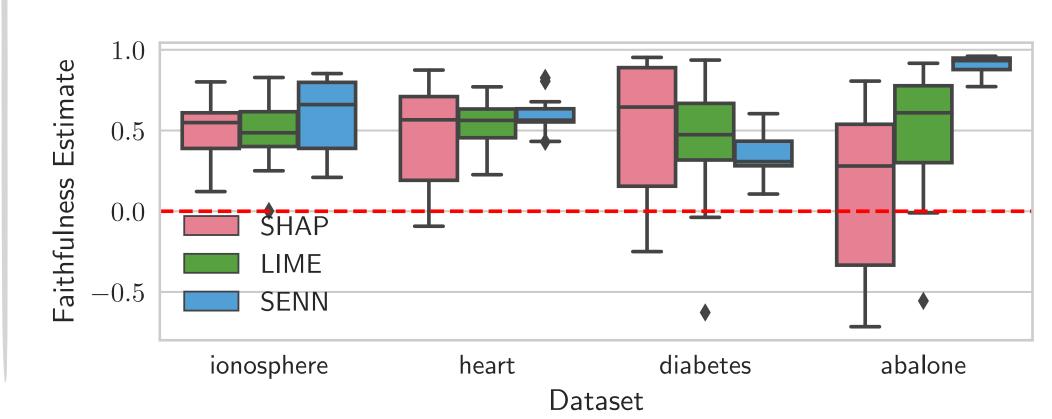


Faithfulness

compare θ_i vs change in prediction from removing x_i : faithfulness(θ_i) = corr(θ_i , $f(x_1, ..., x_n) - f(x_1, ..., x_i, ..., x_n)$)

Explanation of SENN with 20 learnt concepts:

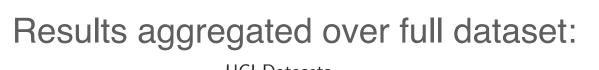


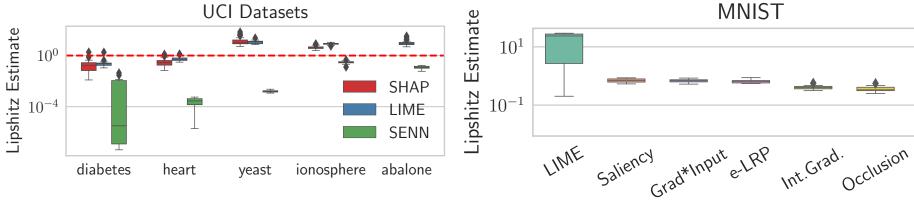


Stability

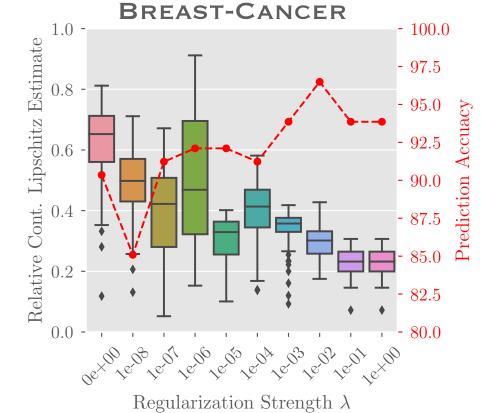
relative change in explanation vs explanation units:

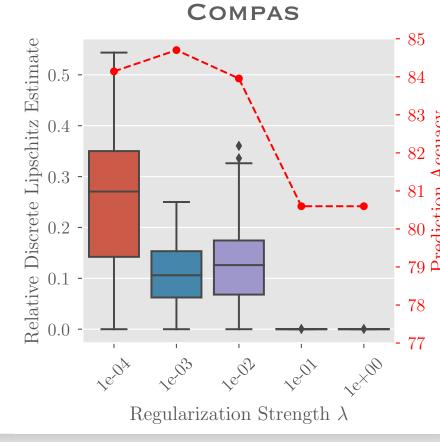
 $\hat{L}(x) = \arg \max \|f_{expl}(\hat{x}) - f_{expl}(x)\|_2 / \|h(\hat{x}) - h(x)\|$





Effect of regularization on SENN's stability:





Results aggregated over full dataset: