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- What makes linear models "interpretable"? Can we preserve
it while increasing the complexity of the models?

- We identify basic desiderata for interpretability —explicitness,
faithfulness and stability—and enforce them during training

- Leads to a class of rich complex models that produce robust
explanations as intrinsic part of their operation

- High modeling capacity often necessary for performance
Recent work focused on producing a-posteriori explanations

Explains locally w/ limited access to inner model workings:

- gradients/reverse-propagation
 black-box queries

 Challenges:
- definition of locality ey T
- computational cost 4 i)

. explanations aren't robust (small A in input = large A in expl)

A-posteriori explanations are sometimes the only option
(e.g. for already-trained models)

Otherwise, can we make our models explain their predictions
as Intrinsic part of their operation?
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Learning Interpretable Basis Concepts

P e.g. sum, affine functions with positive coefficients . Explanation based on raw inputs suitable in low-dimension
p application-dependent

p view f as function of £ := A(x). Want0,(x) to behave
' as (constant) coeffs of fw.rté ,ie. O0(x) = V.f
use V. f = V. f-J!to impose proxy condition:

Lo(f(2)) = [[Vaf(z) = 0(x) " J7 (z)[| = 0

" ensures f not only looks like a linear model
but actually (locally) behaves like one!!!

Der. f(x) = g(6,(0)h (%), ..., O ()h(x))

IS a self-explaining model if:

1. £ Is monotone and completely additive
2. g is increasing on each z; := 0,(x)(x) /
3. {(x)}*_,is an interpretable representation of x}
4. k is 'small’

5. 0 Is locally-Lipschitz with respect to 7 —

- For high-dim inputs, raw features are not ideal for explanation
- often lead to noisy explanations, sensitive to artifacts
- hard to analyze coherently
- lack of robustness is amplified

- Instead, operate on higher level features ("concepts"):
 e.g. textures and shapes instead of raw pixels

- |deally, concepts informed by in-domain expert knowledge

Concept encoder: transforms input into

interpretable basis features Training Loss: £, (f(x),y) + ALo(f) + é‘ﬁh(:v x)
oL, — - Desiderata for concepts /(x): Proposed Approach
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- If not available, concepts can be learnt with rest of the model
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Interpretability Desiderata

concept encoder A( - ; wp,) T and concepts to produce
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Experiments

From Interpretable to Complex

- Starting point: linear model n
) =0Tx =) 0x+86,
- Interpretable because: =1
1. inputs x; grounded on meaningful observations
2. 6. have clear interpretation: = contribution of x; to f(x)
3. additive aggregation of 6,x; does't conflate feature-wise
interpretation of impact
Step 1: Generalized coefficients. fx) =|6(x) x
- Let coefficients depend on the input:
+ Choose 6(-) from a complex class (e.g. neural net)

Step 2: Beyond raw features. J(x) = 0(x) |h(x)
- linear model explanation is only in terms of raw inputs
- allow more general features - interpretable basis concepts

Step 3: Further generalization. f(x) = @(X)lh()c)l, ey 0(0),h(x),)

- Aggregation function more general than sum

Model is now nearly as powerful as any neural network
but not really more interpretable (so far).

Need to regularize model to preserve the interpretability
properties of the original linear model!!

Explicitness/Intelligibility Faithfulness Stability
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Results aggregated over full dataset: Effect of regularization on SENN's stability:
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A: Very important!
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